
Automatic Software Error Finding:
Approaches and Tradeoffs

(candidacy exam)

Vaggelis Atlidakis

1

2

3

Software errors: Find them
before they find you!

Reviewed approaches
● Test input generation
● Statistical error detection

4

3
2

Learning-based
Program AnalysisTransfer Learning

 & Multitask Learning

5

24

4

Papers from three areas

Symbolic Execution &
Fuzzing

5

Symbolic execution & fuzzing

Symbolic
execution

Fuzzing

Test input
generation

6

Symbolic
execution

Fuzzing

Test input
generation

Introduced in EFFIGY[1](1976)
● Execute on symbolic inputs

● Summarize classes of inputs

Symbolic execution 101

7

Classic symbolic vs concolic execution

Symbolic
execution

Test input
generation

Classic
symbolic
execution

Concolic
execution

Fuzzing

8

Classic symbolic execution
● Maintain symbolic state

● Fork symbolic execution on branches

● Use solver

○ Branch feasibility

Concolic execution
● Maintain concrete & symbolic state

● Run concrete execution on taken branches

● Use solver

○ Cover not-taken branches

Classic symbolic vs concolic execution

➢ Implemented in EXE [2](2006) ➢ Implemented in DART [12](2005)

9

Concrete
state

void test_me(int x, int y){

 //naughty programmer
 z = x*x*x;

 if (z == y + 1)
 abort();
 else

 exit(0);
}

Symbolic
state

Create symbolic
variables: x=a, y=b

z=a*a*a

Random concrete
values: x=1, y=1

z=1

a*a*a != b + 1

Example

Path
constraint

10

Concrete
state

void test_me(int x, int y){

 //naughty programmer
 z = x*x*x;

 if (z == y + 1)
 abort();
 else

 exit(0);
}

Symbolic
state

Create symbolic
variables: x=a, y=b

z=a*a*a

Random concrete
values: x=1, y=1

z=1

a*a*a != b + 1

Example

Path constraint: (a*a*a != b + 1)
Cannot solve

Path
constraint

11

Concrete
state

void test_me(int x, int y){

 //naughty programmer
 z = x*x*x;

 if (z == y + 1)
 abort();
 else

 exit(0);
}

Symbolic
state

Create symbolic
variables: x=a, y=b

z=a*a*a

Random concrete
values: x=1, y=1

z=1

a*a*a != b + 1

Example

Path constraint: (a*a*a != b + 1)
Cannot solve
Simplify: a = 1 ↔ 1 != b + 1

Path
constraint

12

Concrete
state

void test_me(int x, int y){

 //naughty programmer
 z = x*x*x;

 if (z == y + 1)
 abort();
 else

 exit(0);
}

Symbolic
state

Create symbolic
variables: x=a, y=b

z=a*a*a

New concrete
values: x=1, y=0

z=1

a*a*a != b + 1

Example

Path constraint: (a*a*a != b + 1)
Cannot solve
Simplify: a = 1 ↔ 1 != b + 1
Negate & solve: b = 0

Path
constraint

13

Concrete
state

void test_me(int x, int y){

 //naughty programmer
 z = x*x*x;

 if (z == y + 1)
 abort();
 else

 exit(0);
}

Symbolic
state

Create symbolic
variables: x=a, y=b

z=a*a*a

New concrete
variables: x=1, y=0

z=1

a*a*a == b + 1

Example

Path
constraint

14

Concrete
state

void test_me(int x, int y){

 //naughty programmer
 z = syscall(x)

 if (z == y + 1)
 abort();
 else

 exit(0);
}

Symbolic
state

Create symbolic
variables: x=a, y=b

z=a*a*a

New concrete
variables: x=1, y=0

z=1

a*a*a == b + 1

Example

Path
constraint

15

General limitations

● Handling complex constraints

● Environment problem

➢ Path explosion

Classic symbolic execution

Entire
computation

tree

Getting stuck
here

16

What do we gain?

● Executions run to completion

➢ Path explosion still a problem

Getting stuck
here

Entire
computation

tree

Concolic execution

17

Concolic

Comparative view

Classic
symbolic

App Mean number of
instructions

#Test cases

Media 54M 2,266

Office 923M 3,008

Statistics from SAGE[19]

Coverage Number of
COREUTILS

tools

Avg. #ELOC

100% 16 3307
90-100% 38 3958
80-90% 22 5013

COREUTILS tools statement coverage KLEE [3]

18

Symbolic
execution

Fuzzing

Test input
generation

Classic
symbolic
execution

Concolic
execution

System Type What’s new?

EXE[2] Symbolic Pioneer symbolic execution engine
KLEE[3] Symbolic Models environment

UC-KLEE[9] Symbolic Checks individual functions
CLOUD9[7] Symbolic Parallelization of symbolic execution
DART[12] Concolic Pioneer concolic execution engine
CUTE[13] Concolic Adds symbolic with pointers

PEX[5] Concolic Concolic execution in .NET
SAGE[19] Concolic Generational search on deep paths

CREST[15] Hybrid Concolic exec. & random testing
VERISOFT[8] Hybrid Concolic exec. & state merging

S2E[6] Hybrid Symbolic exec. w/ virtualization

Classic symbolic vs concolic execution

19

Fuzzing 101

Symbolic
execution

Fuzzing

Test input
generation

Classic
symbolic
execution

Concolic
execution

20

Fuzzing 101

Symbolic
execution

Fuzzing

Test input
generation

Classic
symbolic
execution

Concolic
execution

Reliability of UNIX utilities[18](1990)
● Feed random inputs and monitor for errors

● Easy to implement:

● Inputs that trigger incorrect behaviour are small
fraction

$> while true; \
 > do head -n 10 /dev/urandom | a.out; \
 > done

21

Fuzzing: mutation-based vs grammar-based

Symbolic
execution

Fuzzing

Test input
generation

Classic
symbolic
execution

Concolic
execution

Mutation-
based

Grammar-
based

22

➢ American Fuzzy Lop (AFL)[23] Key points
● Coverage-guided search

● No assumptions for particular input
format

● Hard branches (e.g., magic
numbers)

Mutants

Mutation-based fuzzing

23

Key points
● Use grammar to describe input

formats

● Good for structured input formats

➢ Writing grammar is labour-intensive,
manual process

➢ SPIKE grammar-based fuzzer [24]

Grammar-based fuzzing

// Magic number -- don’t fuzz
static("89504E470D0A1A0A");
…
// Fuzz next bytes
block_start("Header");
fuzzable_byte(1); // Width
...
block_end("Header”);
...

24

Learning-based fuzzing

Symbolic
execution

Fuzzing

Test input
generation

Classic
symbolic
execution

Concolic
execution

Mutation-
based

Grammar-
based

Learning-
based

➢ GLADE: Synthesizing program input grammars [25](2017)

25

Learning-based fuzzing

Key points
● Start with an input sample

● Construct increasingly general regular
expressions

● Translate to Context Free Grammar

➢ Learning is slow

26

Learning-based fuzzing

Key points
● Feed input samples and monitor

taken/non-taken branches

● Use training data X,Y learn model for
branching behavior

● Use model to perform gradient-guided
mutations

➢ Unclear generalization to “never-taken”
paths

Input
samples (hex) Control flow of target

program

Edges
bitmap

Training
data X

Training
data Y

➢ NEUZZ: Fuzzing with Neural Program Learning [29](2018)

Characteristics GLADE [25] NEUZZ [29] SKYFIRE [27] RL Fuzzing [28] Learn & Fuzz [26]

Learns to
model

Valid input
format

Taken/non-taken
branches

Valid input
format

High reward
mutation policy

Valid input
format

Mutations Use grammar Use model’s
gradients

Use grammar and
AFL

Use learnt policy Use model’s
predictions

Strength Fully blackbox Gradient-guided
mutations

Semantic validity
of test cases

End-to-end RL
formulation

Location-specific
mutation probabilities

Weakness Learning realistic
grammars slow

Unclear
generalization to

unseen behaviors

Used a huge
collection of input

samples

Unclear quality of
RL policy

Unclear benefit
(production-optimized

initial seeds)

Learning-based fuzzing

28

Dynamic program analysis

Symbolic
execution

Fuzzing

Classic
symbolic
execution

Concolic
execution

Mutation-
based

Grammar-
based

Learning-
based

Test input
generation

29

Statistical error detection

Correctness
patterns

Quality
metrics

Statistical
error

detection

30

Correctness patterns

Correctness
patterns

Quality
metrics

Statistical
error

detection

31

➢ DeepBugs [31](2017)

Key points
● Inconsistent but...which is correct?

● Most code is (hopefully) correct

● Perform transformations to create
incorrect samples

➢ Need to come up with language-specific
checkers

?

?

Correctness patterns

32

Quality metrics

Correctness
patterns

Quality
metrics

Statistical
error

detection

33

➢ Transfer Defect Learning [34](2013)

Key points
● Code quality metrics of known defects

● Predict if new files look defective

● General metrics ↔ reusable across new
targets

➢ File-level reports

Quality metrics

34

Comparative view

System Proxy for error
detection

Source-target Transfer learning
type

DeepBugs [31] Correctness
patterns

Same N/A

Bugs as Deviant
Behaviour [30]

Correctness
patterns

Same N/A

Naturalness [32] Quality metrics Same N/A

TCA+ [34] Quality metrics Different Domain
adaptation

Semi-supervised
Defect Prediction [33]

Quality metrics Different Inductive transfer
learning

35

Statistical error detection

Symbolic
execution

Fuzzing

Test input
generation

Classic
symbolic
execution

Concolic
execution

Mutation-
based

Grammar-
based

Learning-
based

Correctness
patterns Statistical

error
detection Quality

metrics

Automatic
software error

finding

36

Automatic software error finding

Symbolic
execution

Fuzzing

Test input
generation

Classic
symbolic
execution

Concolic
execution

Mutation-
based

Grammar-
based

Learning-
basedAutomatic

software error
finding

Correctness
patterns Statistical

error
detection Quality

metrics

37

Bibliography
Test Input Generation Using Symbolic Execution & Fuzzing
[1] King, James C. "Symbolic execution and program testing." Communications of the ACM 19.7 (1976): 385-394.
[2] Cadar, Cristian, et al. "EXE: automatically generating inputs of death." ACM CCS'06
[3] Cadar, Cristian, Daniel Dunbar, and Dawson R. Engler. "KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs."
OSDI 2008.
[4] Boonstoppel, Peter, Cristian Cadar, and Dawson Engler. "RWset: Attacking path explosion in constraint-based test generation." International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, Berlin, Heidelberg, 2008.
[5] Tillmann, Nikolai, and Jonathan De Halleux. "Pex-white box test generation for .net." International conference on tests and
proofs.Springer,Berlin,Heidelberg,2008.`
[6] Chipounov, Vitaly, Volodymyr Kuznetsov, and George Candea. 'S2E: A platform for in-vivo multi-path analysis of software systems.' Acm Sigplan 2011.
[7] Bucur, Stefan, et al. "Parallel symbolic execution for automated real-world software testing." 6th conference on Computer systems. ACM, 2011.
[8] Avgerinos, Thanassis, et al. "Enhancing symbolic execution with veritesting." 36th International Conference on Software Engineering. ACM, 2014.
[9] Ramos, David A., and Dawson R. Engler. "Under-Constrained Symbolic Execution: Correctness Checking for Real Code." USENIX Security 2015.
[10] Stephens, Nick, et al. "Driller: Augmenting Fuzzing Through Selective Symbolic Execution." NDSS. Vol. 16. 2016.
[11] Baldoni, Roberto, et al. "A survey of symbolic execution techniques." ACM Computing Surveys (CSUR) 51.3 (2018): 50.
[12] Godefroid, Patrice, Nils Klarlund, and Koushik Sen. "DART: directed automated random testing." ACM Sigplan Notices. Vol. 40. No. 6. ACM, 2005.
[13] Sen, Koushik, Darko Marinov, and Gul Agha. "CUTE: a concolic unit testing engine for C." ACM SIGSOFT Software Engineering Notes. ACM, 2005.
[14] Godefroid, Patrice. "Compositional dynamic test generation." ACM Sigplan Notices. Vol. 42. No. 1. ACM, 2007.
[15] Majumdar, Rupak, and Koushik Sen. "Hybrid concolic testing." Software Engineering, 2007. ICSE 2007. 29th International Conference on. IEEE, 2007.
[16] Cadar, Cristian, and Koushik Sen. "Symbolic execution for software testing: three decades later." Communications of the ACM 56.2 (2013): 82-90.
[17] Burnim, Jacob, and Koushik Sen. "Heuristics for scalable dynamic test generation." Proceedings of the 2008 23rd IEEE/ACM international conference on
automated software engineering. IEEE Computer Society, 2008.
[18] Miller, Barton P., Louis Fredriksen, and Bryan So. "An empirical study of the reliability of UNIX utilities." Communications of the ACM (1990): 32-44.
[19] Godefroid, Patrice, Michael Y. Levin, and David A. Molnar. "Automated whitebox fuzz testing." NDSS. Vol. 8. 2008.
[20] Godefroid, Patrice, Adam Kiezun, and Michael Y. Levin. "Grammar-based whitebox fuzzing." ACM Sigplan Notices. Vol. 43. No. 6. ACM, 2008.
[21] Bounimova, Ella, Patrice Godefroid, and David Molnar. "Billions and billions of constraints: Whitebox fuzz testing in production. Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013.
[22] McMinn, Phil. "Search-based software test data generation: a survey." Software testing, Verification and reliability 14.2 (2004): 105-156.
[23] American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/afl/
[24] SPIKE. https://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html

