
Automated Software Testing with Blackbox Fuzzing

Vaggelis Atlidakis University of Southern California,
 Nov 2023, Invited Talk

➢ U.S. companies lost > $2 trillion in 2022 due to poor software quality1

○ ~10% of U.S. Gross Domestic Product (GDP)

➢ Bugs found earlier are easier to fix
○ A bug found in coding/unit testing takes ~3x less time to fix than in post-release2

This talk: Automated software testing with blackbox fuzzing
➢ RESTler [ICSE ’19]: Collaboration with Microsoft research
➢ IvySyn [USENIX SEC '23]: Collaboration with Brown University

Why software testing?

[1] "Cost of Poor Software Quality: A 2022 Report," Consortium for Information & Software Quality
[2] "Impact of Inadequate Infrastructure for Software Testing, 2022," National Institute of Standards & Technology

Intro

https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/cpsq-report-nov-22-1.pdf
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

➢ U.S. companies lost > $2 trillion in 2022 due to poor software quality1

○ ~10% of U.S. Gross Domestic Product (GDP)

➢ Bugs found earlier are easier to fix
○ A bug found in coding/unit testing takes ~3x less time to fix than in post-release2

This talk: Automated software testing with blackbox fuzzing
➢ RESTler [ICSE ’19]: Collaboration with Microsoft research
➢ IvySyn [USENIX SEC '23]: Collaboration with Brown University

Why software testing?

[1] "Cost of Poor Software Quality: A 2022 Report," Consortium for Information & Software Quality
[2] "Impact of Inadequate Infrastructure for Software Testing, 2022," National Institute of Standards & Technology

Outline

https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/cpsq-report-nov-22-1.pdf
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

What
➢ Test cloud services with REST APIs
➢ Find ``500 Internal Server Errors''

Why
➢ Past approaches were not automated
➢ Testing one API request each time

How: Stateful REST API Fuzzing
➢ Generate stateful sequences of API requests

RESTler: Stateful REST API Fuzzing

Test example on GitLab1

Delete a file from a project
1. Create a gitlab project
2. Create a file
3. Delete the file
➢ “500 Internal Server Error”

file-name: app/project.rb

producer of: project-id

project-id: 13083
consumer of: project-id

producer of: file-name

consumer of: project-id, file-name

[1] https://about.gitlab.com/

RESTler: Stateful REST API Fuzzing

https://about.gitlab.com/

System overview

REST API
specification

(e.g., OpenAPI)

RESTler
compiler

RESTler test
engine

❖ Generate tests (state-space
exploration)

❖ Drop invalid requests

Tests &
bugs

RESTler
grammar

(currently in Python)

❖ Identify producer-consumer
relationships

❖ Generate code to parse
responses

RESTler: Stateful REST API Fuzzing

Selected evaluation results

➢ Q1: Do RESTler tests help increase code coverage?

➢ Q2: Bugs found with RESTler?

Study subject: Gitlab
➢ Complex backend (> 350 KLOCs; mostly ruby-on-rails)

➢ Hundrends of API endpoints

➢ Complex API request payloads

RESTler: Stateful REST API Fuzzing

API
Family

 Total API
Requests

Seq.
 Len.

Code Coverage
(lines of code) Tests

Gitlab 15 (*11) 1 598 1
Commits 2 1108 7

3 1196 250
4 1760 2220

… … …

Deeper service exploration (Q1)

❖ Longer sequences increase
service-side code coverage

Testing APIs with RESTler (5h per API family)

RESTler: Stateful REST API Fuzzing

API
Family

 Total API
Requests

Seq.
 Len.

Code Coverage
(lines of code) Tests

Gitlab 15 (*11) 1 598 1
Commits 2 1108 7

3 1196 250
4 1760 2220

… … …

Deeper service exploration (Q1)

❖ Longer sequences increase
service-side code coverage

❖Progress in large search space

Testing APIs with RESTler (5h per API family)

RESTler: Stateful REST API Fuzzing

API
Family

 Total API
Requests

Seq.
 Len.

Code Coverage
(lines of code) Tests

Gitlab 15 (*11) 1 598 1
Commits 2 1108 7

3 1196 250
4 1760 2220

… … …

Deeper service exploration (Q1)

❖ Longer sequences increase
service-side code coverage

❖Progress in large search space

Example: Testing for 5 hours

➢ Brute-force: 741 million sequences

➢ RESTler: 2220 total test sequences
✓ Producer-consumer request dependencies
✓ Dynamic service feedback

Testing APIs with RESTler (5h per API family)

RESTler: Stateful REST API Fuzzing

Bugs found with RESTler (Q2)

Gitlab Bug [#50268]
1. Create a gitlab project
2. Create a file with a proper

commit message
3. Delete the file with an empty

commit message
➢ “500 Internal Server Error”

➢ Found 28 confirmed such bugs in Gitlab in 2018

➢ …and many more in production cloud services

RESTler: Stateful REST API Fuzzing

RESTler since 2019

➢ Uncovered 100s of bugs in production Azure, Bing, and Office365 services
○ Including "severe critical bugs1"

➢ Open-sourced at: https://github.com/microsoft/restler-fuzzer

➢ Multiple teams are using it daily
○ Developer fuzzing
○ Specification correctness
○ Regression testing

[1] https://patricegodefroid.github.io/research-overview.html

RESTler: Stateful REST API Fuzzing

https://github.com/microsoft/restler-fuzzer
https://patricegodefroid.github.io/research-overview.html

➢ U.S. companies lost > $2 trillion in 2022 due to poor software quality1

○ ~10% of U.S. Gross Domestic Product (GDP)

➢ Bugs found earlier are easier to fix
○ A bug found in coding/unit testing takes ~3x less time to fix than in post-release2

This talk: Automated software testing with blackbox fuzzing
➢ RESTler [ICSE ’19]: Collaboration with Microsoft research
➢ IvySyn [USENIX SEC '23]: Collaboration with Brown University

Why software testing?

[1] "Cost of Poor Software Quality: A 2022 Report," Consortium for Information & Software Quality
[2] "Impact of Inadequate Infrastructure for Software Testing, 2022," National Institute of Standards & Technology

Outline

https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/cpsq-report-nov-22-1.pdf
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

Why
➢ Core of DL frameworks is implemented in C/C++
➢ Past approaches required manual effort and domain knowledge

How: A bottom-up approach
➢ Find a crash in the native part
➢ Synthesize python code reproducing the crash

What
➢ Find memory safety errors in Deep Learning (DL) frameworks

IvySyn: Automated Vulnerability Discovery in DL Frameworks

Example

Proof-of-Vulnerability (PoV)

Native (kernel) implementation

Triggers a crash

from public python APIs

IvySyn: Automated Vulnerability Discovery in DL Frameworks

System overview

Instrumentation

Mutation-based fuzzer:
Type-aware DL-specific

mutations

Watchdog
Developer
Testsuite 1

Developer
Testsuite 2

Developer
Testsuite N

…

Synthesizer

IvySyn: Automated Vulnerability Discovery in DL Frameworks

Selected evaluation results

➢ Q1: How quickly can IvySyn find crashes?

➢ Q2: How effective is IvySyn in synthesizing PoVs?

Target Frameworks: Tensorflow1 and Pytorch2

Against Google's Atheris3

❖ Atheris+: Default Atheris + automation

❖ Atheris++: Default Atheris + automation + type-aware

❖ IvySyn: Type-aware + DL-specific mutations
[1] https://www.tensorflow.org/
[2] https://github.com/pytorch/pytorch
[3] https://github.com/google/atheris

IvySyn: Automated Vulnerability Discovery in DL Frameworks

https://www.tensorflow.org/
https://github.com/pytorch/pytorch
https://github.com/google/atheris

Efficiency in finding crashing inputs (Q1)

Tensorflow Pytorch

IvySyn: Automated Vulnerability Discovery in DL Frameworks

Efficiency in finding crashing inputs (Q1)

Tensorflow Pytorch

IvySyn: Automated Vulnerability Discovery in DL Frameworks

Efficiency in finding crashing inputs (Q1)

Tensorflow Pytorch
~9h / 71 crashes

 (Total crashes: 80)
~85h / 59 crashes

 (Total crashes: 64)
~16h / 23 crashes

 (Total crashes: 25) ~81h / 17 crashes
 (Total crashes: 18)

IvySyn: Automated Vulnerability Discovery in DL Frameworks

Efficiency in finding crashing inputs (Q1)

~9h / 71 crashes
 (Total crashes: 80)

Tensorflow Pytorch
~85h / 59 crashes

 (Total crashes: 64)

~100h / 35 crashes
 (Total crashes: 47)

~16h / 23 crashes
 (Total crashes: 25) ~81h / 17 crashes

 (Total crashes: 18)

~90h / 8 crashes
 (Total crashes: 9)

Union total: 87 Union total: 30

IvySyn: Automated Vulnerability Discovery in DL Frameworks

Effectiveness in synthesizing PoVs (Q2)

Framework Fuzzed
Kernels

Unique
Crashes

Synthesized PoVs

Tensorflow 412 103 86 / 103 (83%)

Pytorch 747 81 49 / 81 (60%)

All 1159 184 135 / 184 (73%)

➢ Synthesized 135 PoVs
➢ Identified 61 previously-unknown vulnerabilities
➢ Assigned with 39 new CVEs

 https://gitlab.com/brown-ssl/ivysyn

IvySyn: Automated Vulnerability Discovery in DL Frameworks

https://gitlab.com/brown-ssl/ivysyn

Effectiveness in synthesizing PoVs (Q2)

Framework Fuzzed
Kernels

Unique
Crashes

Synthesized PoVs

Tensorflow 412 103 86 / 103 (83%)

Pytorch 747 81 49 / 81 (60%)

All 1159 184 135 / 184 (73%)

➢ Synthesized 135 PoVs
➢ Identified 61 previously-unknown vulnerabilities
➢ Assigned with 39 new CVEs

 https://gitlab.com/brown-ssl/ivysyn

IvySyn: Automated Vulnerability Discovery in DL Frameworks

https://gitlab.com/brown-ssl/ivysyn

Recap

Automated software testing with blackbox fuzzing

➢ RESTler [ICSE '19]
 Top-down approach: Start from the APIs

➢ IvySyn [USENIX SEC '23]
 Bottom-up approach: Start from native implementations

RESTler team: Patrice Godefroid and Marina Polishchuk @ Microft Research

IvySyn team: Neophytos Chrisou, Di Jin, and Vasilions Kemerlis @ Brown University
Baishakhi Ray @ Columbia University

