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Why study OSes?
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Why study OSes?

- These days: Code developed with superficial understanding
- No free lunch: Bugs won't fix themselves in production

- In the near future: Requirement for software engineers with legit
systems understanding will soon be at an all-time high
- A line of code is not just a line of code
- Myriads of things happen under the hood



Why study OSes?

These days: Code developed with superficial understanding
- No free lunch: Bugs won't fix themselves in production

In the near future: Requirement for software engineers with legit
systems understanding will soon be at an all-time high

- A line of code is not just a line of code

- Myriads of things happen under the hood

Learning to navigate a complex codebase, such as an OS kernel, will
make you a fearless software engineer!



What you need to do to pass the class?

- Programming assignments (groups of three): 50%
- You'll add features to the Linux kernel and run a VM with it
- You'll need to understand lots of code; won't need to write much
- Prerequisites
- Do you have a laptop that can run a Linux VM?
- Can you make teams of three ASAP?
- Canyou use git?
- Exams: 50%
- Midterm: 20%
- Final: 30%



What you really need to do?

- Come to class, ask questions, be curious
- Choose a team you can collaborate well with

- Own your code

You know what you must not do...

This is not a class you pass by outsourcing your work

There is no magic: You do the work = You pass the class

GenAT usage: Use LLMs to help you understand

- It's a difficult course. Hang in there, we will help...
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Overview

- We'll start from hardware and follow a question-oriented approach
- Intro [Q: What is an 0S?]

- Events [Q: When does the OS run?] : i‘éSiC (H/W & s/W)
: . stractions
- : ?
Runtime [Q: How does a program look like in memory?] * Primitives
- Processes [Q: What is a process?] * Mechanisms

- IPC [Q: How do processes communicate?]

- Threads [Q: What is a thread?]

- Synchronization [Q: What goes wrong w/o synchronization?]

- Time Management [Q: What is scheduling?]

- Memory Management [Q: What is virtual memory?]

- Files [Q: What is a file descriptor?]

- Storage Management [Q: How do we allocate disk space to files?]



What is an OS?
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What is an OS?
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What is an OS?
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What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

- Multiple users not necessarily sane, build and run different applications, at
the same time on shared hardware (design assumptions)

Desirable properties? @@@ @ @

- Security: Does the system behave as expected

~
J

in adversarial contexts? | Applications |

- R.eliabglitx-: Doef the asys‘rem behave as expected Distribution-specific )
given benign failures: | packages and utilities

- Portability: Ts it easy for developers to build r ) .y
and maintain apps? | OS kernel (e.g., Linux) }‘- Class

- FEairness: Is the system "pleasant" to use? [ Hardware (Memory, CPU,

Storage...)
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What is the hardware we build OSes for?

Physical Memory (PM)

- Stores data addressable on a byte granularity

Processor

- Reads data from memory to its registers

- Performs computations

- Writes the data from its registers to memory

System bus

- Memory and processor communication channel

Is this model satisfactory?

Reminds you of something?
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Designing an OS kernel

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

From desirable properties to design principles

- Fault Isolation: Errors in one running program do
not affect any other program

- Principle of Least Privilege (PoPL): Any program
has the minimum privileges necessary to perform

its function

- Preemption: The OS is always able to take control

of the processor, regardless of what programs
are running
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Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program
cannot read, write, or jump to another program's memory
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Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must
have full control of the hardware



Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must
have full control of the hardware
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- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing
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Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing
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Hardware components leveraged by OS mechanisms
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Access times (1 clock cycle ~ 0.5ns)

- L1 Cache (hit): ~ 5 clock cycles

- L2 Cache (hit): ~10 clock cycles

- L3 Cache (hit): ~40-60 clock cycles

- L3 Cache miss (MM access): ~100 clock cycles



