
 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis
std05010

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

What you probably ordered?

What you ended up getting?

[1] https://iot-analytics.com/cloud-market/

Why study OSes?

Revenue of leading cloud vendors (2019–21)

https://iot-analytics.com/cloud-market/

Why study OSes?
- These days: Code developed with superficial understanding

- No free lunch: Bugs won't fix themselves in production

- In the near future: Requirement for software engineers with legit
systems understanding will soon be at an all-time high

- A line of code is not just a line of code
- Myriads of things happen under the hood

Why study OSes?
- These days: Code developed with superficial understanding

- No free lunch: Bugs won't fix themselves in production

- In the near future: Requirement for software engineers with legit
systems understanding will soon be at an all-time high

- A line of code is not just a line of code
- Myriads of things happen under the hood

- Learning to navigate a complex codebase, such as an OS kernel, will
make you a fearless software engineer!

What you need to do to pass the class?
- Programming assignments (groups of three): 50%

- You'll add features to the Linux kernel and run a VM with it

- You'll need to understand lots of code; won't need to write much

- Prerequisites

- Do you have a laptop that can run a Linux VM?

- Can you make teams of three ASAP?

- Can you use git?

- Exams: 50%

- Midterm: 20%

- Final: 30%

What you really need to do?

- Come to class, ask questions, be curious

- Choose a team you can collaborate well with

- Own your code

- You know what you must not do…

- This is not a class you pass by outsourcing your work

- There is no magic: You do the work ⇒ You pass the class

- GenAI usage: Use LLMs to help you understand

- It's a difficult course. Hang in there, we will help…

Overview
- We'll start from hardware and follow a question-oriented approach

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]

* Basic (H/W & S/W)

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]

- Threads [Q: What is a thread?]

- Files [Q: What is a file descriptor?]

* Basic (H/W & S/W)
* Abstractions

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]

- Files [Q: What is a file descriptor?]

* Basic (H/W & S/W)
* Abstractions
* Primitives

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms

What is an OS?

What is an OS?

What is an OS?

What is an OS?

What is an OS?

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?

Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware

Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware (design assumptions)

Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware (design assumptions)

Desirable properties?

Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware (design assumptions)

Desirable properties?
- Security: Does the system behave as expected

in adversarial contexts?

Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware (design assumptions)

Desirable properties?
- Security: Does the system behave as expected

in adversarial contexts?

- Reliability: Does the system behave as expected
given benign failures?

Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware (design assumptions)

Desirable properties?
- Security: Does the system behave as expected

in adversarial contexts?

- Reliability: Does the system behave as expected
given benign failures?

- Portability: Is it easy for developers to build
and maintain apps?

Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware (design assumptions)

Desirable properties?
- Security: Does the system behave as expected

in adversarial contexts?

- Reliability: Does the system behave as expected
given benign failures?

- Portability: Is it easy for developers to build
and maintain apps?

- Fairness: Is the system "pleasant" to use? Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

What is the hardware we build OSes for?

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

What is the hardware we build OSes for?

- Physical Memory (PM)
- Stores data addressable on a byte granularity

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

What is the hardware we build OSes for?

- Physical Memory (PM)
- Stores data addressable on a byte granularity

- Processor
- Reads data from memory to its registers

- Performs computations

- Writes the data from its registers to memory

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

What is the hardware we build OSes for?

- Physical Memory (PM)
- Stores data addressable on a byte granularity

- Processor
- Reads data from memory to its registers

- Performs computations

- Writes the data from its registers to memory

- System bus
 - Memory and processor communication channel

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

What is the hardware we build OSes for?

- Physical Memory (PM)
- Stores data addressable on a byte granularity

- Processor
- Reads data from memory to its registers

- Performs computations

- Writes the data from its registers to memory

- System bus
 - Memory and processor communication channel

- Is this model satisfactory?

- Reminds you of something?

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

Designing an OS kernel

OS

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

Designing an OS kernel

OS

From desirable properties to design principles

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

Designing an OS kernel

OS

From desirable properties to design principles
- Fault Isolation: Errors in one running program do

not affect any other program

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

Designing an OS kernel

OS

From desirable properties to design principles
- Fault Isolation: Errors in one running program do

not affect any other program

- Principle of Least Privilege (PoPL): Any program
has the minimum privileges necessary to perform
its function

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

From desirable properties to design principles
- Fault Isolation: Errors in one running program do

not affect any other program

- Principle of Least Privilege (PoPL): Any program
has the minimum privileges necessary to perform
its function

- Preemption: The OS is always able to take control
of the processor, regardless of what programs
are running

Designing an OS kernel

OS

Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program
cannot read, write, or jump to another program's memory

MMU

System bus

Physical address
for program A

Address line

Data line ✓✓✓
Physical
addresses
for prog. A

Physical
addresses
for prog. B

 Unused memory
Registers

ALUCt
rl

un
it

メ メ メ

Processor Physical memory

Virtual address
for program A

Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program
cannot read, write, or jump to another program's memory

Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must
have full control of the hardware

Processor
Mode regstr.

Privileged instr.
- Edit mode regstr.
- Edit page tables
- Disable IRQs

Instructions

All instr. can be
executed in this
memory region

Privileged instr.
cannot be executed in

this memory region

OS
Kernel

User
programs

- ALU,
- Ctrl. flow,
- Data mvment

Non-privileged
instr.Virtual memory

What's the current value
of the mode register?

Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must
have full control of the hardware

Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing

MMU

System bus

Physical address
for program A

Address line

Data line
Processor Physical

memory

Virtual address
for program A

Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing

MMU

System bus

Physical address
for program A

Address line

Data line
Processor Physical

memory

⏲

Virtual address
for program A

Is program A running
for a "fair" amount

of time?

Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing

Memory bus

System bus Address line

Data line

Physical
memory

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

 Look up the translation
index from main mem.

Hardware components leveraged by OS mechanisms

Nahalem Intel® core i7

CPU
Core 1

Ι-L1 Cache
32 KB

D-L1 Cache
32 KB

D-L2 Cache
256 KB

I-L2 Cache
256 KB

2-level TLB
32 KB

 2 MB of
Shared L3
(I+D) Cache

1.8 cm

Reality check on hardware's scale

Nahalem Intel® core i7

CPU
Core 1

Ι-L1 Cache
32 KB

D-L1 Cache
32 KB

D-L2 Cache
256 KB

I-L2 Cache
256 KB

2-level TLB
32 KB

 2 MB of
Shared L3
(I+D) Cache

1.8 cm

Access times (1 clock cycle ~ 0.5ns)

Reality check on hardware's scale

Nahalem Intel® core i7

CPU
Core 1

Ι-L1 Cache
32 KB

D-L1 Cache
32 KB

D-L2 Cache
256 KB

I-L2 Cache
256 KB

2-level TLB
32 KB

 2 MB of
Shared L3
(I+D) Cache

1.8 cm

Reality check on hardware's scale

Access times (1 clock cycle ~ 0.5ns)
- L1 Cache (hit): ~ 5 clock cycles

Nahalem Intel® core i7

CPU
Core 1

Ι-L1 Cache
32 KB

D-L1 Cache
32 KB

D-L2 Cache
256 KB

I-L2 Cache
256 KB

2-level TLB
32 KB

 2 MB of
Shared L3
(I+D) Cache

1.8 cm

Reality check on hardware's scale

Access times (1 clock cycle ~ 0.5ns)
- L1 Cache (hit): ~ 5 clock cycles

- L2 Cache (hit): ~10 clock cycles

Nahalem Intel® core i7

CPU
Core 1

Ι-L1 Cache
32 KB

D-L1 Cache
32 KB

D-L2 Cache
256 KB

I-L2 Cache
256 KB

2-level TLB
32 KB

 2 MB of
Shared L3
(I+D) Cache

1.8 cm

Reality check on hardware's scale

Access times (1 clock cycle ~ 0.5ns)
- L1 Cache (hit): ~ 5 clock cycles

- L2 Cache (hit): ~10 clock cycles

- L3 Cache (hit): ~40-60 clock cycles

Nahalem Intel® core i7

CPU
Core 1

Ι-L1 Cache
32 KB

D-L1 Cache
32 KB

D-L2 Cache
256 KB

I-L2 Cache
256 KB

2-level TLB
32 KB

 2 MB of
Shared L3
(I+D) Cache

1.8 cm

Access times (1 clock cycle ~ 0.5ns)
- L1 Cache (hit): ~ 5 clock cycles

- L2 Cache (hit): ~10 clock cycles

- L3 Cache (hit): ~40-60 clock cycles

- L3 Cache miss (MM access): ~100 clock cycles

Reality check on hardware's scale

