K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis
std05010

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

What you probably ordered?

What you ended up getting?

Why study OSes?

Revenue of leading cloud vendors (2019-21)

Quarterly cloud revenue in $B (laaS, Paa$S, and Others) aWS
18 ~
\—;7

16
14 A
1 / I'\A/I;Errc;soft
10 -
8 |
6
4 -) Google Cloud

2

0
Q12019 Q22019 Q32019 Q42019 Q12020 Q22020 Q32020 Q42020 Q12021 Q22021 Q32021 Q42021

[1] https://iot-analytics.com/cloud-market/

https://iot-analytics.com/cloud-market/

Why study OSes?

- These days: Code developed with superficial understanding
- No free lunch: Bugs won't fix themselves in production

- In the near future: Requirement for software engineers with legit
systems understanding will soon be at an all-time high
- A line of code is not just a line of code
- Myriads of things happen under the hood

Why study OSes?

These days: Code developed with superficial understanding
- No free lunch: Bugs won't fix themselves in production

In the near future: Requirement for software engineers with legit
systems understanding will soon be at an all-time high

- A line of code is not just a line of code

- Myriads of things happen under the hood

Learning to navigate a complex codebase, such as an OS kernel, will
make you a fearless software engineer!

What you need to do to pass the class?

- Programming assignments (groups of three): 50%
- You'll add features to the Linux kernel and run a VM with it
- You'll need to understand lots of code; won't need to write much
- Prerequisites
- Do you have a laptop that can run a Linux VM?
- Can you make teams of three ASAP?
- Canyou use git?
- Exams: 50%
- Midterm: 20%
- Final: 30%

What you really need to do?

- Come to class, ask questions, be curious
- Choose a team you can collaborate well with

- Own your code

You know what you must not do...

This is not a class you pass by outsourcing your work

There is no magic: You do the work = You pass the class

GenAT usage: Use LLMs to help you understand

- It's a difficult course. Hang in there, we will help...

Overview

- We'll start from hardware and follow a question-oriented approach

Overview

- We'll start from hardware and follow a question-oriented approach

Intro [Q: What is an 0S?]
Events [Q: When does the OS run?] * Basic (H/W & s/W)

Runtime [Q: How does a program look like in memory?]

Overview

- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]

- Events [Q: When does the OS run?] : Basic (H/\{V & S/W)
- Runtime [Q: How does a program look like in memory?] Abstractions

- Processes [Q: What is a process?]

- Threads [Q: What is a thread?]

- Files [Q: What is a file descriptor?]

Overview

- We'll start from hardware and follow a question-oriented approach
- Intro [Q: What is an 0S?]

- Events [Q: When does the OS run?] : Basic (H/\{V & S/W)
- Runtime [Q: How does a program look like in memory?] - l':rl.:::“fi:?:e‘r;ons

- Processes [Q: What is a process?]

- IPC [Q: How do processes communicate?]

- Threads [Q: What is a thread?]

- Synchronization [Q: What goes wrong w/o synchronization?]

- Files [Q: What is a file descriptor?]

Overview

- We'll start from hardware and follow a question-oriented approach
- Intro [Q: What is an 0S?]

- Events [Q: When does the OS run?] : i‘éSiC (H/W & s/W)
: . stractions
- : ?
Runtime [Q: How does a program look like in memory?] * Primitives
- Processes [Q: What is a process?] * Mechanisms

- IPC [Q: How do processes communicate?]

- Threads [Q: What is a thread?]

- Synchronization [Q: What goes wrong w/o synchronization?]

- Time Management [Q: What is scheduling?]

- Memory Management [Q: What is virtual memory?]

- Files [Q: What is a file descriptor?]

- Storage Management [Q: How do we allocate disk space to files?]

What is an OS?

Mon Feb 17 9:07AM

@& Finder File Edit View Go Window Help =
[v 3 2 o | . R 3
: = Tl : E : |
| : _ : |
» '-» ! 3 4 2 il

[Bracritty

‘e

Recents

=

SN
o

What is an OS?

Activities =) Terminal Feb 17 09:08

& Finder Fi

parallels@ubuntu-linux-22-04-02-desktop:~

&

-
®

Parallels Shared

What is an OS?

Activities BTe

& Finder Fi

&

a Alapps >
(\yl

& = 7S
Word o PowerPoint Fabrikam

@ “ 3

p= 5 B ® ¥
!

Settings Calculator Remote Desktop Snipping Tool Company Portal Power Automate

Recommended [
PI Fabrikam Sales Deck Fabrikam Proposal

BB Brand Guidelnes [——

PDF

a Business Overview Contoso Company Profile

o m

Parallels Shared

What is an

What is an OS?

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

What is an OS?

- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?

OO

Applications

Distribution-specific
packages and utilities

OS kernel (e.g., Linux)

}_ This

[Hardware (Memory, CPU,
Storage...)

class

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware
OO00O®

Applications

Distribution-specific
packages and utilities

OS kernel (e.g., Linux)

]_ This

[Hardware (Memory, CPU,
Storage...)

class

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

- Multiple users not necessarily sane, build and run different applications, at
the same time on shared hardware (design assumptions)

OO

Applications

Distribution-specific
packages and utilities

OS kernel (e.g., Linux)

]_ This

[Hardware (Memory, CPU,
Storage...)

class

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

- Multiple users not necessarily sane, build and run different applications, at
the same time on shared hardware (design assumptions)

Desirable properties? @@@ @ @

Applications

Distribution-specific
packages and utilities

OS kernel (e.g., Linux)

]_ This

[Hardware (Memory, CPU,
Storage...)

class

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

- Multiple users not necessarily sane, build and run different applications, at
the same time on shared hardware (design assumptions)

Desirable properties? @@@ @ @

~

- Security: Does the system behave as expected .
in adversarial contexts? \ Applications

Distribution-specific
packages and utilities

OS kernel (e.g., Linux)

}_ This

[Hardware (Memory, CPU,
Storage...)

class

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

- Multiple users not necessarily sane, build and run different applications, at
the same time on shared hardware (design assumptions)

Desirable properties? @@@ @ @

- Security: Does the system behave as expected .
in adversarial contexts? \ Applications

~
J

- Reliability: Does the system behave as expected

given benign failures? Distribution-specific

packages and utilities

OS kernel (e.g., Linux) }4—““5

class

[Hardware (Memory, CPU,
Storage...)

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

- Multiple users not necessarily sane, build and run different applications, at
the same time on shared hardware (design assumptions)

Desirable properties? @@@ @ @

- Security: Does the system behave as expected

~
J

in adversarial contexts? | Applications |

- R.eliabglitx-: Doef the asys‘rem behave as expected Distribution-specific)
given benign failures: | packages and utilities

- Portability: Ts it easy for developers to build r) .y
and maintain apps? | OS kernel (e.g., Linux) }‘- Class

[Hardware (Memory, CPU,
Storage...)

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

- Multiple users not necessarily sane, build and run different applications, at
the same time on shared hardware (design assumptions)

Desirable properties? @@@ @ @

- Security: Does the system behave as expected

~
J

in adversarial contexts? | Applications |

- R.eliabglitx-: Doef the asys‘rem behave as expected Distribution-specific)
given benign failures: | packages and utilities

- Portability: Ts it easy for developers to build r) .y
and maintain apps? | OS kernel (e.g., Linux) }‘- Class

- FEairness: Is the system "pleasant" to use? [Hardware (Memory, CPU,

Storage...)

What is the hardware we build OSes for?

What is the hardware we build OSes for?

Physical Memory (PM)

- Stores data addressable on a byte granularity

Physical memory

Processor

What is the hardware we build OSes for?

Physical memory

Physical Memory (PM)

- Stores data addressable on a byte granularity

Processor
- Reads data from memory to its registers
- Performs computations

- Writes the data from its registers to memory

Processor

System bus

Data line

Physical memory

Physical address
for program A

Address line

What is the hardware we build OSes for?

Physical Memory (PM)

- Stores data addressable on a byte granularity

Processor

- Reads data from memory to its registers
- Performs computations

- Writes the data from its registers to memory

System bus

- Memory and processor communication channel

Processor

System bus

Data line

Physical memory

Physical address
for program A

Address line

What is the hardware we build OSes for?

Physical Memory (PM)

- Stores data addressable on a byte granularity

Processor

- Reads data from memory to its registers

- Performs computations

- Writes the data from its registers to memory

System bus

- Memory and processor communication channel

Is this model satisfactory?

Reminds you of something?

Designing an OS kernel
Desirable properties @@@ @ @

1) Security, 2) Reliability, 3) Portability, 4) Fairness - — ~
Applications
Distribution-specific A
0s 4 U packages and utilities |
OS kernel (e.g., Linux)]
Processor Physical memory
&1 01| System bus
L\-’_z_i_'_'“_'_ - : Data line
: Registers i _‘- __ :

T Address line

Physical address
for program A

Designing an OS kernel

Desirable properties

1) Security, 2) Reliability, 3) Portability, 4) Fairness

From desirable properties to design principles

OO

Applications

J

0S < -

Distribution-specific A

packages and utilities

J

OS kernel (e.g., Linux)]

Processor

Physical memory

System bus

Data line

I Address line

Physical address
for program A

Designing an OS kernel
Desirable properties @@@ @ @

1) Security, 2) Reliability, 3) Portability, 4) Fairness r 2
Applications
From desirable properties to design principles
|? .P , 9, P P (Distribution-specific A
- Fault Isolation: Errors in one running program do 0sJ L packages and utilities
not affect any other program)
OS kernel (e.g., Linux)]

Processor Physical memory
Eg | [Al0}| Systembus
10 3 1
L Data line
Registers i f __ :
_________ 1

T Address line

Physical address
for program A

Designing an OS kernel
Desirable properties @@@ o @

1) Security, 2) Reliability, 3) Portability, 4) Fairness r 2
Applications
From desirable properties to design principles
P _p _ 9, P P (Distribution-specific A
- Fault Isolation: Errors in one running program do 0sJ L packages and utilities
not affect any other program)
OS kernel (e.g., Linux)]
- Principle of Least Privilege (PoPL): Any program -
has the minimum privileges necessary to perform :
its function P 9 yTop Processor Physical memory
EEiianl| Systembus
S Data fne
I Registers i f __ :

T Address line

Physical address
for program A

Designing an OS kernel

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

From desirable properties to design principles

- Fault Isolation: Errors in one running program do
not affect any other program

- Principle of Least Privilege (PoPL): Any program
has the minimum privileges necessary to perform

its function

- Preemption: The OS is always able to take control

of the processor, regardless of what programs
are running

OO

Applications

Distribution-specific
packages and utilities

0S4 -
-
OS kernel (e.g., Linux)]
.
Processor Physical memory
5! Al System bus
e Data lne
Regisfersi f __ :

T Address line

Physical address
for program A

Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program
cannot read, write, or jump to another program's memory

Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program
cannot read, write, or jump to another program's memory

Processor Physical memory
System bus

_____ R Physical
Ik K Data line]» addresses
55 ALU N I e for prog. A
R R SRR < > MMU < >

Frmmmmmmen [T 2 T >]» Unused memory

i Regisfer-sj Address line Physical

"""""]» addresses

for prog. B

Physical address
Virtual address for program A
for program A

Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must
have full control of the hardware

Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must
have full control of the hardware

Instructions

Virtual memory

Privileged instr.
cannot be executed in
this memory region
Processor
All instr. can be mmmmmmm oy
executed in this { D ! Mode regstr. |
memory region [[RSER&EES 0 | =---o--o-o0

What's the current value
of the mode register?

Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing

Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing

Processor

Virtual address
for program A

System bus

MMU |

Data line

.

Physical address

for program A

Address line -

Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing

Is program A running
| Yy’ , [for a "fair" amount
of time?
H System bus
Data line
Processor | e | MMU | e .

]] Address line

\?’rfual addre's‘\s Physical address
or program for program A

Hardware components leveraged by OS mechanisms

CPU core

MMU

Processor TLB miss
e T - Look up the translation
,5’; 11 ALU f * index from main mem.
Il t——— Virtual

po address TLB hit (~1 cycle)

| — [—

physical

A4 [address
PE—

data from L1 cache
oo L1 miss: Look up
data on next level

-—]
da'ra from L2 cache

(~10 cycles) l

L2 miss: Look up
data in next level

L3 cache hit
-
dn‘ra from L3 cache

(~40-60 cycles) l

L3 miss: Look up data
in main mem. v

Data line
Main mem. access (~100 cycles) { ""

Sys‘rem bus Address line

Reality check on hardware's scale

Nahalem Intel® core |7

2-level TLB

32 KB
P
I-L1 Cache D-L1 Cache
2:KB
3 |:| <— 32KB

e D-L2.Cathe
256'KB &
I

<t I-L2 Gache
256 KB 3

N

2 MB of
Shared L3
(I+D) Cache .

1.8cm

Reality check on hardware's scale

Nahalem Intel® core |7

2-level TLB

I-L1 Cache D-L1 Cache
2:KB
3 |:| <— 32KB

< D-L2.Cathe
256'KB 4
| :

< I-L2 Gache

2 MB of
Shared L3
(I+D) Cache. .

Access times (1 clock cycle ~ 0.5ns)

Reality check on hardware's scale

Nahalem Intel® core |7

2-level TLB

I-L1 Cache D-L1 Cache
2:KB
3 |:| <— 32KB

< D-L2.Cathe
256'KB 4
| :

< I-L2 Gache

2 MB of
Shared L3
(I+D) Cache. .

Access times (1 clock cycle ~ 0.5ns)
- L1 Cache (hit): ~ 5 clock cycles

Reality check on hardware's scale

Nahalem Intel® core |7

2-level TLB

I-L1 Cache D-L1 Cache
2:KB
3 |:| <— 32KB

< D-L2.Cathe
256'KB 4
| :

< I-L2 Gache

2 MB of
Shared L3
(I+D) Cache. .

Access times (1 clock cycle ~ 0.5ns)
- L1 Cache (hit): ~ 5 clock cycles
- L2 Cache (hit): ~10 clock cycles

Reality check on hardware's scale

Nahalem Intel® core |7

2-level TLB

I-L1 Cache D-L1 Cache
2:KB
3 |:| <— 32KB

< D-L2.Cathe
256'KB 4
| :

< I-L2 Gache

2 MB of
Shared L3
(I+D) Cache. .

Access times (1 clock cycle ~ 0.5ns)
- L1 Cache (hit): ~ 5 clock cycles

- L2 Cache (hit): ~10 clock cycles

- L3 Cache (hit): ~40-60 clock cycles

Reality check on hardware's scale

Nahalem Intel® core |7

2-level TLB

I-L1 Cache " D-L1 Cache
2:KB
3 |:| <— 32KB

W< D-L2.Cathe
256'KB 4
| :

4_,. I-L2 Cache

2 MB of
Shared L3
(I+D) Cache. .

1.8cm

Access times (1 clock cycle ~ 0.5ns)

- L1 Cache (hit): ~ 5 clock cycles

- L2 Cache (hit): ~10 clock cycles

- L3 Cache (hit): ~40-60 clock cycles

- L3 Cache miss (MM access): ~100 clock cycles

