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Why study OSes?
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Why study OSes?
- These days: Code developed with superficial understanding

- No free lunch: Bugs won't fix themselves in production

- In the near future: Requirement for software engineers with legit 
systems understanding will soon be at an all-time high

- A line of code is not just a line of code
- Myriads of things happen under the hood

- Learning to navigate a complex codebase, such as an OS kernel, will 
make you a fearless software engineer!



What you need to do to pass the class?
- Programming assignments (groups of three): 50%

- You'll add features to the Linux kernel and run a VM with it

- You'll need to understand lots of code; won't need to write much

- Prerequisites

- Do you have a laptop that can run a Linux VM?

- Can you make teams of three ASAP?

- Can you use git?

- Exams: 50%

- Midterm: 20%

- Final: 30%



What you really need to do?

- Come to class, ask questions, be curious

- Choose a team you can collaborate well with

- Own your code

- You know what you must not do…

- This is not a class you pass by outsourcing your work

- There is no magic: You do the work ⇒ You pass the class

- GenAI usage: Use LLMs to help you understand

- It's a difficult course. Hang in there,  we will help…
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Overview
- We'll start from hardware and follow a question-oriented approach 

- Intro [Q: What is an OS?] 
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms
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What is an OS?
- A layer of abstraction that translates the hardware of a machine into 

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at 

the same time on shared hardware  (design assumptions)

Desirable properties?
- Security: Does the system behave as expected                                                     

in adversarial contexts?

- Reliability: Does the system behave as expected 
given benign failures?

- Portability: Is it easy for developers to build 
and maintain apps?

- Fairness: Is the system "pleasant" to use? Hardware (Memory, CPU, 
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific 
packages and utilities

This 
class
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What is the hardware we build OSes for?

- Physical Memory (PM)
- Stores data addressable on a byte granularity

- Processor
- Reads data from memory to its registers

- Performs computations

- Writes the data from its registers to memory

- System bus
   - Memory and processor communication channel

- Is this model satisfactory?

- Reminds you of something?
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OS kernel (e.g., Linux)

Applications

Distribution-specific 
packages and utilities

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

From desirable properties to design principles
- Fault Isolation: Errors in one running program do 

not affect any other program

- Principle of Least Privilege (PoPL): Any program 
has the minimum privileges necessary to perform 
its function

- Preemption: The OS is always able to take control 
of the processor, regardless of what programs 
are running

Designing an OS kernel

OS



Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program 
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Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program 
cannot read, write, or jump to another program's memory 



Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must 
have full control of the hardware 



Processor
Mode regstr.

Privileged instr.
- Edit mode regstr.
- Edit page tables
- Disable IRQs

Instructions

All instr. can be 
executed in this 
memory region 

Privileged  instr. 
cannot be executed in 

this memory region 

OS 
Kernel

User 
programs

- ALU,
- Ctrl. flow,
- Data mvment

Non-privileged 
instr.Virtual memory

What's the current value 
of the mode register?

Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must 
have full control of the hardware
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Implementing preemption

- In simple words: The OS should be able to periodically gain control of 
the processor regardless of what programs are executing
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Hardware components leveraged by OS mechanisms
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D-L1 Cache
32 KB

D-L2 Cache
256 KB

I-L2 Cache
256 KB

2-level TLB
32 KB

 2 MB of
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Access times (1 clock cycle ~ 0.5ns)
- L1 Cache (hit): ~ 5 clock cycles

- L2 Cache (hit): ~10 clock cycles

- L3 Cache (hit): ~40-60 clock cycles

- L3 Cache miss (MM access): ~100 clock cycles

Reality check on hardware's scale


