K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis
Lecture 02

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Administrivia

- Register to eclass ASAP
- Use your sdixxx@di.uoa.gr email (not gmail)

- The registration will not remain open forever

mailto:sdiXXX@di.uoa.gr

Administrivia

Where we are today? ~100 ppl.

40

30

20

Students

10

Administrivia
Homework bonus (+0.5 / 10)
- +5%, if all homeworks submitted on time
- +3.75%, if three homeworks submitted on time
- +2.5%, if Two homeworks submitted on time
- +1.25%, if one homework submitted on time

Class attendance (+0.5 / 10)
- We' |l see how you get that...

Minimum grade requirements
- At least the base at final exam

Summary so far
Introduction (7/10)
- Ql: What is a 0S?
- Q2: Why do we need an OS?
- Q3: Desirable properties for an 0S?
- Q4: Hardware model?
- Qb: Design principles?
- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

Summary so far
Introduction (7/10)
- Ql: What is a 0S?
- Q2: Why do we need an OS?
- Q3: Desirable properties for an 0S?
- Q4: Hardware model?
- Qb: Design principles?
- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

Summary so far
- Introduction (7/10)
- Q1: What is a 0S?
- Q2: Why do we need an OS?
- Q3: Desirable properties for an OS?
- Q4: Hardware model?
- Qb: Design principles?
- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

What is an OS?

- A layer of abstraction that translates the hardware of a machine into
(standardized) software concepts that applications use

Why need an OS?

- Multiple users not necessarily sane, build and run different applications, at
the same time on shared hardware (design assumptions)

Desirable properties? @@@ @ @

- Security: Does the system behave as expected

~
J

in adversarial contexts? | Applications |

- R.eliabglitx-: Doef the asys‘rem behave as expected Distribution-specific)
given benign failures: | packages and utilities

- Portability: Ts it easy for developers to build r) .y
and maintain apps? | OS kernel (e.g., Linux) }‘- Class

- FEairness: Is the system "pleasant" to use? [Hardware (Memory, CPU,

Storage...)

Summary so far
- Introduction (7/10)
- Q1: What is a 0S?
- Q2: Why do we need an OS?
- Q3: Desirable properties for an 0OS?
- Q4: Hardware model?
- Q5: Design principles?
- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

Processor

System bus

Data line

Physical memory

Physical address
for program A

Address line

What is the hardware we build OSes for?

Physical Memory (PM)

- Stores data addressable on a byte granularity

Processor

- Reads data from memory to its registers

- Performs computations

- Writes the data from its registers to memory

System bus

- Memory and processor communication channel

Is this model satisfactory?

Reminds you of something?

Summary so far
- Introduction (7/10)
- Q1: What is a 0S?
- Q2: Why do we need an OS?
- Q3: Desirable properties for an 0OS?
- Q4: Hardware model?
- Q5: Design principles?
- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

Designing an OS kernel

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

From desirable properties to design principles

- Fault Isolation: Errors in one running program do
not affect any other program

- Principle of Least Privilege (PoLP): Any program
has the minimum privileges necessary to perform
its function

- Preemption: The OS is always able to take control
of the processor, regardless of what programs
are running

OO

Applications

Distribution-specific
packages and utilities

0S4 -
-
OS kernel (e.g., Linux)]
.
Processor Physical memory
5! Al System bus
e Data lne
Regisfersi f __ :

T Address line

Physical address
for program A

Summary so far
- Introduction (7/10)
- Q1: What is a 0S?
- Q2: Why do we need an OS?
- Q3: Desirable properties for an 0OS?
- Q4: Hardware model?
- Q5: Design principles?
- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program
cannot read, write, or jump to another program's memory

Processor Physical memory
System bus

_____ R Physical
Ik K Data line]» addresses
55 ALU N I e for prog. A
R R SRR < > MMU < >

Frmmmmmmen [T 2 T >]» Unused memory

i Regisfer-sj Address line Physical

"""""]» addresses

for prog. B

Physical address
Virtual address for program A
for program A

Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must
have full control of the hardware

Instructions

Virtual memory

Privileged instr.
cannot be executed in
this memory region
Processor
All instr. can be mmmmmmm oy
executed in this { D ! Mode regstr. |
memory region [[RSER&EES 0 | =---o--o-o0

What's the current value
of the mode register?

Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing

Is program A running
| Yy’ , [for a "fair" amount
of time?
H System bus
Data line
Processor | e | MMU | e .

]] Address line

\?’rfual addre's‘\s Physical address
or program for program A

Summary so far

- Introduction (7/10)

- Ql:
- Q2:
- Q3:
- Q4:
- Q5:
- Q6:
- Q7:

What is a OS?

Why need an OS?

Desirable properties for an OS?

Abstract hardware model?

Design principles?

Hardware support to enforce design principles?

Basic hardware components so far?

Hardware components leveraged by OS mechanisms

CPU core

MMU

Processor TLB miss
e T - Look up the translation
,5’; 11 ALU f * index from main mem.
Il t——— Virtual

po address TLB hit (~1 cycle)

| — [—

physical

A4 [address
PE—

data from L1 cache
oo L1 miss: Look up
data on next level

-—]
da'ra from L2 cache

(~10 cycles) l

L2 miss: Look up
data in next level

L3 cache hit
-
dn‘ra from L3 cache

(~40-60 cycles) l

L3 miss: Look up data
in main mem. v

Data line
Main mem. access (~100 cycles) { ""

Sys‘rem bus Address line

Reality check on hardware's scale and access times

CPU core MMU

Processor TLB miss
e - Look up the franslation
IGE ALY 'f * index from main mem.
ey, (S Virtual

——————— dd it (~

| Registers | a ress - TLB hit (~1 cycle)

______ physical

AA \ address
-—

data from L1 cache

(~5 cycles) L1 miss: Look up
data on next level

- |
daTa from L2 cache

(~10 cycles) l

L2 miss: Look up
data in next level

L3 cache hit
-—
data from L3 cache

(~40-60 cycles) l

L3 miss: Look up data
in main mem.

Nahalem Intel® core |7

2-level TLB :

I—Ll Cache ‘ D-Li Cache
2/KB = ‘
3 <— 32KB

e D-L2\Cathe
256 KB 5
1
(—-.-I -L2 Cache
256 KF

2 MB of
Shared L3
(I+D) Cache..

Main mem. access (~100 cycles) {

Summary so far

- Introduction (7/10)

- Ql:
- Q2:
- Q3:
- Q4:
- Q5:
- Q6:
- Q7:

What is a OS?

Why need an OS?

Desirable properties for an OS?

Abstract hardware model?

Design principles?

Hardware support to enforce design principles?

Basic hardware components so far?

Execution pipeline

How does the processor execute programs?

tick n

tick n

tick n

tick n

tick n

tick n

+ 1

Processor

- Read instr. at memory addr
pointed by %ip, to instr. register

- Execute instr.: ALU ops, effective /
target addr. calculation

i - Mem. access at effective address or
: update pc to new target address
1
1

WB (optional)

: - Write ALU results or mem. accessed
: value to register
1
1

Virtual memory

- 0x00000000

- User space

~ 0xC0000000 (36B)

- Kernel space

- OxFFFFFFF (46B)

When may the processor access memory?

Execution pipeline

tick n

tick n

tick n

tick n

tick n

tick n

+ 1

Processor

- Read instr. at memory addr
pointed by %ip, to instr. register

- Execute instr.: ALU ops, effective /
target addr. calculation

i - Mem. access at effective address or
: update pc to new target address
1
1

WB (optional)

: - Write ALU results or mem. accessed
: value to register
1
1

Virtual memory

- 0x00000000

- User space

~ 0xC0000000 (36B)

- Kernel space

- OxFFFFFFF (46B)

How does the system boot?

Storage

First __,
sector

How does the system boot?

Physical memory,
processor in real mode

Storage

Motherboard

First __,

0x000f0000 (960KB)
sector

0x000ffffO —>
0x00100000 (1MB)

How does the system boot?

Physical memory,
processor in real mode

Storage

Motherboard
0x000f0000 (960KB) S

< OX000ffffo —> :
" 0x00100000 (IMB) e | :

S~
~~_

First __,
sector

Higher mem
addresses

How does the system boot?

Physical memory,
processor in real mode

Storage

Motherboard
0x000f0000 (960KB) S

0x000ffffO —> .
0x00100000 (IMB) b :

~__6RUB asks | .
which kernel
to load

First __,
sector

Higher mem
addresses

How does the system boot?

Physical memory, Virtual memory,
processor in real mode processor in protected mode
Storage
First Motherboard 0x00000000
- 0x000f0000 (960K B) P)
sector :
0x000ffffO —> ROM
0x00100000 (IMB) b |
~__6RUB asks | .
which kernel
to load — Higher mem
addresses
Higher mem
addresses
0xC0000000 (36B)

—

Kernel recolates
itself, sets up page
tables,and enables

virtual memory

OxFffffff (468)

Summary so far
- Introduction (10/10)
- Q1: What is a 0S?
- Q2: Why need an 0S?
- Q3: Desirable properties for an 0S?
- Q4: Abstract hardware model?
- Q5: Design principles?
- Q6: Hardware support to enforce design principles?
- Q7: Basic hardware components so far?
- Q8: Reality check on hardware's scale and access times?
- Q9: How does the processor execute programs?
- Q10: How does the system boot?

