
 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis
Lecture 02

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Administrivia
- Register to eclass ASAP

 - Use your sdixxx@di.uoa.gr email (not gmail)

 - The registration will not remain open forever

mailto:sdiXXX@di.uoa.gr

Administrivia

- Where we are today? ~100 ppl.

Administrivia
- Homework bonus (+0.5 / 10)

 - +5%, if all homeworks submitted on time

 - +3.75%, if three homeworks submitted on time

 - +2.5%, if two homeworks submitted on time

 - +1.25%, if one homework submitted on time

- Class attendance (+0.5 / 10)
- We' ll see how you get that…

- Minimum grade requirements
- At least the base at final exam

Summary so far
- Introduction (7/10)

 - Q1: What is a OS?

- Q2: Why do we need an OS?

- Q3: Desirable properties for an OS?

- Q4: Hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

Summary so far
- Introduction (7/10)

 - Q1: What is a OS?

- Q2: Why do we need an OS?

- Q3: Desirable properties for an OS?

- Q4: Hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

Summary so far
- Introduction (7/10)

 - Q1: What is a OS?

- Q2: Why do we need an OS?

- Q3: Desirable properties for an OS?

- Q4: Hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

What is an OS?
- A layer of abstraction that translates the hardware of a machine into

(standardized) software concepts that applications use

Why need an OS?
- Multiple users not necessarily sane, build and run different applications, at

the same time on shared hardware (design assumptions)

Desirable properties?
- Security: Does the system behave as expected

in adversarial contexts?

- Reliability: Does the system behave as expected
given benign failures?

- Portability: Is it easy for developers to build
and maintain apps?

- Fairness: Is the system "pleasant" to use? Hardware (Memory, CPU,
Storage…)

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

This
class

Summary so far
- Introduction (7/10)

 - Q1: What is a OS?

- Q2: Why do we need an OS?

- Q3: Desirable properties for an OS?

- Q4: Hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

What is the hardware we build OSes for?

- Physical Memory (PM)
- Stores data addressable on a byte granularity

- Processor
- Reads data from memory to its registers

- Performs computations

- Writes the data from its registers to memory

- System bus
 - Memory and processor communication channel

- Is this model satisfactory?

- Reminds you of something?

Summary so far
- Introduction (7/10)

 - Q1: What is a OS?

- Q2: Why do we need an OS?

- Q3: Desirable properties for an OS?

- Q4: Hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

System bus

Physical address
for program A

Address line

Data line

Processor

Registers

ALU

Physical memory

Addr Data

0x000

0x3FF
…

0x1

0xa
…

0x400 0x5

Ct
rl

un
it

OS kernel (e.g., Linux)

Applications

Distribution-specific
packages and utilities

Desirable properties
1) Security, 2) Reliability, 3) Portability, 4) Fairness

From desirable properties to design principles
- Fault Isolation: Errors in one running program do

not affect any other program

- Principle of Least Privilege (PoLP): Any program
has the minimum privileges necessary to perform
its function

- Preemption: The OS is always able to take control
of the processor, regardless of what programs
are running

Designing an OS kernel

OS

Summary so far
- Introduction (7/10)

 - Q1: What is a OS?

- Q2: Why do we need an OS?

- Q3: Desirable properties for an OS?

- Q4: Hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

MMU

System bus

Physical address
for program A

Address line

Data line ✓✓✓
Physical
addresses
for prog. A

Physical
addresses
for prog. B

 Unused memory
Registers

ALUCt
rl

un
it

メ メ メ

Processor Physical memory

Virtual address
for program A

Implementing fault isolation

- In simple words: load/ store/ jmp instructions of a program
cannot read, write, or jump to another program's memory

Processor
Mode regstr.

Privileged instr.
- Edit mode regstr.
- Edit page tables
- Disable IRQs

Instructions

All instr. can be
executed in this
memory region

Privileged instr.
cannot be executed in

this memory region

OS
Kernel

User
programs

- ALU,
- Ctrl. flow,
- Data mvment

Non-privileged
instr.Virtual memory

What's the current value
of the mode register?

Implementing dual-mode execution

- In simple words: A trusted portion of the code (the OS) must
have full control of the hardware

MMU

System bus

Physical address
for program A

Address line

Data line
Processor Physical

memory

⏲

Virtual address
for program A

Is program A running
for a "fair" amount

of time?

Implementing preemption

- In simple words: The OS should be able to periodically gain control of
the processor regardless of what programs are executing

Summary so far
- Introduction (7/10)

 - Q1: What is a OS?

- Q2: Why need an OS?

- Q3: Desirable properties for an OS?

- Q4: Abstract hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: Basic hardware components so far?

Memory bus

System bus Address line

Data line

Physical
memory

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

 Look up the translation
index from main mem.

Hardware components leveraged by OS mechanisms

Nahalem Intel® core i7

CPU
Core 1

Ι-L1 Cache
32 KB

D-L1 Cache
32 KB

D-L2 Cache
256 KB

I-L2 Cache
256 KB

2-level TLB
32 KB

 2 MB of
Shared L3
(I+D) Cache

1.8 cm

Reality check on hardware's scale and access times

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

 Look up the translation
index from main mem.

Summary so far
- Introduction (7/10)

 - Q1: What is a OS?

- Q2: Why need an OS?

- Q3: Desirable properties for an OS?

- Q4: Abstract hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: Basic hardware components so far?

How does the processor execute programs?

Execution pipeline

tick n ——

tick n + 1 ——

tick n + 2 ——

tick n + 3 ——

tick n + 4 ——

tick n + 5 ——

while {

 IF
 - Read instr. at memory addr
 pointed by %ip, to instr. register

 ID
 - Decode instr. from instr. register
 EX
 - Execute instr.: ALU ops, effective /
 target addr. calculation

 MEM (optional)
 - Mem. access at effective address or
 update pc to new target address
 WB (optional)
 - Write ALU results or mem. accessed
 value to register

 ip → ip + 1
}

- 0x00000000

- 0xffffffff (4GB)

- 0xC0000000 (3GB)

Kernel space

User program
 instruction

instruction
instruction
instruction
…
data
data
data

%ip
User space

OS
Kernel

Processor
Virtual memory

Processor

When may the processor access memory?

Execution pipeline

tick n ——

tick n + 1 ——

tick n + 2 ——

tick n + 3 ——

tick n + 4 ——

tick n + 5 ——

while {

 IF
 - Read instr. at memory addr
 pointed by %ip, to instr. register

 ID
 - Decode instr. from instr. register
 EX
 - Execute instr.: ALU ops, effective /
 target addr. calculation

 MEM (optional)
 - Mem. access at effective address or
 update pc to new target address
 WB (optional)
 - Write ALU results or mem. accessed
 value to register

 ip → ip + 1
}

Virtual memory

- 0x00000000

- 0xffffffff (4GB)

- 0xC0000000 (3GB)

Kernel space

User program
 instruction

instruction
instruction
instruction
…
data
data
data

%ip
User space

OS
Kernel

Storage

Bootloader
First
sector

OS Kernel (v1.2)

OS Kernel (v2.0)

 ……

 ……

 ……

How does the system boot?

Physical memory,
processor in real mode

0x00100000 (1MB)
BIOS0x000ffff0

0x000f0000 (960KB)

ROM

Storage

Bootloader
First
sector

OS Kernel (v1.2)

OS Kernel (v2.0)

 ……

 ……

 ……

Motherboard

How does the system boot?

Physical memory,
processor in real mode

0x00100000 (1MB)

Bootloader

BIOS0x000ffff0
0x000f0000 (960KB)

ROM

Storage

Bootloader
First
sector

OS Kernel (v1.2)

OS Kernel (v2.0)

 ……

 ……

 ……

Motherboard

How does the system boot?

Higher mem
addresses

Physical memory,
processor in real mode

0x00100000 (1MB)

Bootloader

BIOS0x000ffff0
0x000f0000 (960KB)

ROM

OS
Kernel (v2.0)

Storage

Bootloader
First
sector

OS Kernel (v1.2)

OS Kernel (v2.0)

 ……

 …… GRUB asks
which kernel

to load

 ……

Motherboard

How does the system boot?

Higher mem
addresses

Physical memory,
processor in real mode

0x00100000 (1MB)

Bootloader

BIOS0x000ffff0
0x000f0000 (960KB)

ROM

OS
Kernel (v2.0)

Storage

Bootloader
First
sector

OS Kernel (v1.2)

OS Kernel (v2.0)

 ……

 …… GRUB asks
which kernel

to load

 ……

Motherboard

0xffffffff (4GB)

Kernel space
(1 GB)

User space
(3 GB)

Higher mem
addresses

0x00000000

Higher mem
addresses

Virtual memory,
processor in protected mode

0xC0000000 (3GB)

Kernel recolates
itself, sets up page
tables,and enables

virtual memory

How does the system boot?

Summary so far
- Introduction (10/10)

 - Q1: What is a OS?

- Q2: Why need an OS?

- Q3: Desirable properties for an OS?

- Q4: Abstract hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: Basic hardware components so far?

- Q8: Reality check on hardware's scale and access times?

- Q9: How does the processor execute programs?

- Q10: How does the system boot?

