
 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis
Lecture 03

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Quiz-01 (Disaster…)

- What was that exactly? Were you here last Monday?

Quiz-01 (Disaster…)

- Next time, be more conscious of the concept of negative points…

Quiz-01 (Disaster…)

- Come pick up your quiz
- sdi1600006
- sdi1900010
- sdi2100058
- sdi2200178
- sdi2200182
- sdi2300064
- sdi2300080
- sdi2300134
- sdi2300202

Administrivia

- Where we are today? ~140 ppl.

Administrivia

- Office hours

- Every Thursday, 10.00-12.00 at A37

- Let us known of your team of three, using this form here

- One submission per team, please!

- The deadline is Sunday October 12, 23.59

- This is a hard deadline

- Warm up instructions posted

- Anonymous feedback form

https://forms.gle/9uC5zCydp7eCi5QN8
https://vatlidak-org.github.io/web/assets/md/setup_instructions/
https://docs.google.com/forms/d/e/1FAIpQLSdPFNENYQN5Iye589xM1eenTDg2hXWE6OeVTXCd8NF18VsJ1Q/viewform

Summary of previous lecture(s)
- Introduction (10/10)

 - Q1: What is a OS?

- Q2: Why do we need an OS?

- Q3: Desirable properties for an OS?

- Q4: Hardware model?

- Q5: Design principles?

- Q6: Hardware support to enforce design principles?

- Q7: The basic hardware components so far?

- Q8: How does the processor execute programs?

- Q9: When does the processor accesses memory?

- Q10: How does the system boot?

Memory bus

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

 Look up the translation
index from main mem.

Handling I/O devices

- What are we missing in terms of hardware?

System bus Address line

Data line

Physical
memory

Memory bus

System bus

Keyboard/
Mouse/
Timers

Disks/
Network

Address line

Data line

Physical
memory

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

 Look up the translation
index from main mem.

I/O devices

Handling I/O devices

- What are we missing in terms of hardware?
 – Keyboard? Mouse?
 - Disk? Network?

Memory bus

System bus

Programmable
Interrupt
Controller

IRQs
Keyboard/

Mouse/
Timers

Disks/
Network

Address line

Data line

Physical
memory

DMA
Controller

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

 Look up the translation
index from main mem.

#Intr.

%idtr

Handling I/O devices

- I/O devices
 - Need a way to get processor's attention
 - Interrupts, Interrupt Requests (IRQs), Direct Memory

 Access (DMA) controler…

Memory bus

System bus

Programmable
Interrupt
Controller

IRQs
Keyboard/

Mouse/
Timers

Disks/
Network

Address line

Data line

Physical
memory

DMA
Controller

while {

 IF – Instruction Fetch
 ID – Instruction Decode
 EXE – Execute Instruction

 MEM – Memory Access
 WB – Write back
 ip → ip + 1

 if (Interrupt) {
 What??
 }
}

Execution pipeline

Handling I/O devices

- I/O devices
 - Need a way to get processor's attention
 - Interrupts, Interrupt Requests (IRQs), Direct Memory

 Access (DMA) controler…

Instruction
boundary

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

#Intr.

 Look up the translation
index from main mem.

%idtr

 Interrupt
Descriptor Tbl.

Keyboard
interrupt handler

Set up in kernel space
during early boot

see: init_IRQ()

…

…

…

…
…

…
…

Mouse
interrupt handler

Disk
 interrupt handler

…

…

…

Regstr. holding the base of IDT

Interrupt handling

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L84

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

#Intr.

 Look up the translation
index from main mem.

%idtr

 Interrupt
Descriptor Tbl.

Keyboard
interrupt handler

Set up in kernel space
during early boot

see: init_IRQ()

…

…

…

…
…

…
…

Mouse
interrupt handler

Disk
 interrupt handler

…

…

…

Regstr. holding the base of IDT

Current
interrupt #

Interrupt handling

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L84

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

#Intr.

 Look up the translation
index from main mem.

%idtr

 Interrupt
Descriptor Tbl.

Keyboard
interrupt handler

Set up in kernel space
during early boot

see: init_IRQ()

…

…

…

…
…

…
…

Mouse
interrupt handler

Disk
 interrupt handler

…

…

…

do_handle_interrupt()

 - Save CPU registers and interrupt error code (if any)
 - Use #intr. and %idtr to execute the appropriate handler
 - Restore CPU context

Regstr. holding the base of IDT

Current
interrupt #

Interrupt handling

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L84

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

#Intr.

 Look up the translation
index from main mem.

%idtr

 Interrupt
Descriptor Tbl.

Keyboard
interrupt handler

Set up in kernel space
during early boot

see: init_IRQ()

…

…

…

…
…

…
…

Mouse
interrupt handler

Disk
 interrupt handler

…

…

…

do_handle_interrupt()
 - Switch to kernel stack, if in user mode
 - Save CPU registers and interrupt error code (if any)
 - Use #intr. and %idtr to execute the appropriate handler
 - Restore CPU context

Regstr. holding the base of IDT

Current
interrupt #

Interrupt handling

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L84

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

#Intr.

 Look up the translation
index from main mem.

%idtr

do_handle_interrupt()
 - Switch stack

- Kernel stack, if in user mode
 - Dedicated stack for critical exceptions

 - Save CPU registers
 - Save interrupt error code (if any)
 - Use #intr. and %idtr to execute the
 appropriate interrupt handler
 - Restore CPU context

Interrupt handling (revised for clarity)

Overview of what's coming…
- Introduction (10/10)
- Events

 - Q1: When does the OS run?

- Q2: What asynchronous events invoke the OS?

- Q3: What synchronous events invoke the OS?

- Q4: What is POSIX?

- Q5: Why do we need POSIX?

- Q6: What is Linux?

When does the OS run?

The OS is a giant handler of events, which runs in
response on two types of events

When does the OS run?

The OS is a giant handler of events, which runs in
response on two types of events

- Asynchronous events: Events that occur due to reasons
external to the program instructions that the processor
was currently executing ⇒ Interrupts

- Synchronous events: Events that occur synchronously as
a result of the execution of a program's instructions

What synchronous events invoke the OS? (revised for clarity)
Exceptions invoking the OS

- Faults: Exceptions that allow the program to be restarted without loss of continuity
- Does not break program continuity
- Next instruction is the faulting instruction (restart)
- The hope is that the OS will be able to "revert the mess" that caused it
- Example: Page fault

- Aborts: Exceptions used to report severe errors
- Breaks program continuity
- The processor may be unable report the precise instruction that caused it
- Example: Double fault (invalid mem. access in a fault handler), machine check error

- Traps: Exceptions reported immediately after the execution of a trapping instruction
- Does not break program continuity
- Next instruction is the one following the trapping instruction
- The old way of making system calls!

X86 exceptions vector (addition)

- From Intel's Software Developer's Manual, p. 3268

- Check also Tab.-7-4/5: Conditions for a Double Fault

- And see kernel/idt.c, for where the page fault

exception handler is one of the first to be added

…

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L63

What synchronous events invoke the OS? (addition)
Exceptions invoking the OS

- Faults: Exceptions that allow the program to be restarted without loss of continuity

- Aborts: Exceptions used to report severe errors
- Traps: Exceptions reported immediately after the execution of a trapping instruction

System calls: The interface between user programs and the OS
- The defacto mechanism for user programs to request services from the OS
- Linux x86_64 defines ~500 syscalls and aarch64 ~460:

 x86/entry/syscalls/syscall_64.tbl arm64/tools/syscall_64.tbl

… …

https://elixir.bootlin.com/linux/v6.13.7/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/v6.13.7/source/scripts/syscall.tbl

Syscall argument passing (aarch64 example) (addition)
DESCRIPTION

 _exit(int status): Terminates the calling process…
 The value status & 0xFF is returned ... as the exit status...

SYSCALL_DEFINE1(exit, int, error_code)
{

// keep only the last byte, and shift it one byte left
do_exit((error_code&0xff)<<8);

}

int main(void) {
 __asm__ __volatile__ ("mov x0, #123"); // Syscall arg0 to reg. %x0, and so on
 __asm__ __volatile__ ("mov x8, #93"); // Syscall NR to reg. %x8 (NR 93 is exit)
 __asm__ __volatile__ ("svc #0"); // Execute the syscall
}

$./svc_test

$ echo $?

123

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/C/ident/error_code
https://elixir.bootlin.com/linux/v6.14/C/ident/do_exit

DESCRIPTION

 _exit(int status): Terminates the calling process…
 The value status & 0xFF is returned ... as the exit status...

SYSCALL_DEFINE1(exit, int, error_code)
{

// keep only the last byte, and shift it one byte left
do_exit((error_code&0xff)<<8);

}

int main(void) {
 __asm__ __volatile__ ("mov $123, %rdi"); // Syscall arg0 to reg. %rdi, and so on
 __asm__ __volatile__ ("mov $60, %rax"); // Syscall NR to reg. %rax (NR 60 is exit)
 __asm__ __volatile__ ("syscall"); // Execute the syscall
}

$./syscall_test

$ echo $?

123

Syscall argument passing (x86_64 example) (addition)

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/C/ident/error_code
https://elixir.bootlin.com/linux/v6.14/C/ident/do_exit

How do user programs know what services
an OS offers?

- We need a standard for that
- Portable Operating System Interface for UNIX (POSIX) is the IEEE

standard for portable UNIX-based OS syscall interfaces

How do user programs know what services
an OS offers?

- We need a standard for that
- Portable Operating System Interface for UNIX (POSIX) is the IEEE

standard for portable UNIX-based OS syscall interfaces
- Describes a set of fundamental abstractions needed for portable

application development

How do user programs know what services
an OS offers?

- We need a standard for that
- Portable Operating System Interface for UNIX (POSIX) is the IEEE

standard for portable UNIX-based OS syscall interfaces
- Describes a set of fundamental abstractions needed for portable

application development
- User programs can directly invoke system calls, but going through POSIX

ensures portability across POSIX-compliant OSes.
- User programs must not break on kernel updates

- OK to recompile code, if I move to another OS

- But…don't make me rewrite it

How do user programs know what services
an OS offers?

- We need a standard for that
- Portable Operating System Interface for UNIX (POSIX) is the IEEE

standard for portable UNIX-based OS syscall interfaces

What does POSIX define?

POSIX defines ~1,200 interfaces, around the following abstractions

What does POSIX define?

POSIX defines ~1,200 interfaces, around the following abstractions
- Processes: A process is an address space with one or more threads executing within that

and the required system resources for those threads

- Threads: A thread is a single flow of control within a process, with its own system
resources required to support a flow of control

- Files: A file is an object that can be written to, read from, or both

What does POSIX define?

POSIX defines ~1,200 interfaces, around the following abstractions
- Processes: A process is an address space with one or more threads executing within that

and the required system resources for those threads

- Threads: A thread is a single flow of control within a process, with its own system
resources required to support a flow of control

- Files: A file is an object that can be written to, read from, or both

- The complete spec with all definitions is here

https://pubs.opengroup.org/onlinepubs/9799919799/

What is Linux?

- A modern, open-source, POSIX-compliant
OS kernel.

What is Linux?

- A modern, open-source, POSIX-compliant
OS kernel.

- Written in '91 by Linus Torvalds from
scratch ~100 KLoC (Jan '25: > 40 MLoC).

What is Linux?

- A modern, open-source, POSIX-compliant
OS kernel.

- Written in '91 by Linus Torvalds from
scratch ~100 KLoC (Jan '25: > 40 MLoC).

- The most popular Unix-like OS today

- Servers: Over 96% of the world's top 1
million websites run on Linux servers

- Cloud: AWS, Google Cloud, and Azure rely
heavily on Linux

- Supercomputers: Almost 100% of the top
500 supercomputers run Linux

What is Linux?

- A modern, open-source, POSIX-compliant
OS kernel.

- Written in '91 by Linus Torvalds from
scratch ~100 KLoC (Jan '25: > 40 MLoC).

- The most popular Unix-like OS today

- Servers: Over 96% of the world's top 1
million websites run on Linux servers.

- Cloud: AWS, Google Cloud, and Azure rely
heavily on Linux

- Supercomputers: Almost 100% of the top
500 supercomputers run Linux

- Android devices: >3 billion devices

Recap
- Introduction (10/10)
- Events

 - Q1: When does the OS run?

- Q2: What asynchronous events invoke the OS?

- Q3: What synchronous events invoke the OS?

- Q4: What is POSIX?

- Q5: Why do we need POSIX?

- Q6: What is Linux?

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

