K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis
Lecture 03

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Quiz-01 (Disaster...)

- What was that exactly? Were you here last Monday?

Median: 2

25

20
15
10
| I
; |
1 2 3 4 5 6 7 8 9

Grade

Number of students (total: 63)

10

Quiz-01 (Disaster...)

- Next time, be more conscious of the concept of negative points...

Median: 6

20
15

10

Number of students (total: 63)

Grade

Quiz-01 (Disaster...)

- Come pick up your quiz
- sdi1l600006
- sdi1900010
- sdi2100058
- sdi2200178
- sdi2200182
- sdi2300064
- sdi2300080
- sdi2300134
- sdi2300202

Administrivia
- Where we are today? ~140 ppl.
50
40
30

20

Students (total: 140)

10

Administrivia

Office hours
- Every Thursday, 10.00-12.00 at A37
Let us known of your team of three, using this form here
- One submission per team, pleasel!
- The deadline is Sunday October 12, 23.59
- This is a hard deadline
Warm up instructions posted
Anonymous feedback form

https://forms.gle/9uC5zCydp7eCi5QN8
https://vatlidak-org.github.io/web/assets/md/setup_instructions/
https://docs.google.com/forms/d/e/1FAIpQLSdPFNENYQN5Iye589xM1eenTDg2hXWE6OeVTXCd8NF18VsJ1Q/viewform

Summary of previous lecture(s)
- Introduction (10/10)
- Q1: What is a 0S?
- Q2: Why do we need an OS?
- Q3: Desirable properties for an 0S?
- Q4: Hardware model?
- Q5: Design principles?
- Q6: Hardware support to enforce design principles?
- Q7: The basic hardware components so far?
- Q8: How does the processor execute programs?
- Q9: When does the processor accesses memory?
- Q10: How does the system boot?

Handling I/0 devices

CPU core MMU

Processor TLB miss
P B, Look up the translation
.g = : ALU 4 * index from main mem.
| gl R Virtual

—————— address - TLB hit (~1 cycle)

| Registers , >

_____ physical

address
PE—

data from L1 cache
(~5 cycles)

data on next level

L2 cache hit
e -
daTa from L2 cache

(~10 cycles) l

l L1 miss: Look up

L2 miss: Look up
data in next level

L3 cache hit
-
da‘ra from L3 cache

(~40-60 cycles) l

L3 miss: Look up data
in main mem.

Main mem. access (~100 cycles) { """""""""""""""""""""""""

- What are we missing in terms of hardware?

Data line

System bus

Address line

Handling I/0 devices

- What are we missing in terms of hardware?

CPU core

MMU

Processor TLB miss - KQYbOGr‘d? MOUSeD I/O d .
— PO TT——— . evices
gEIAY % e From i mem. - Disk? Network?
[irtual

------ address TLB hit (~1 cycle)

| Registers

..... ' [foma] | =227

address
PE—

data from L1 cache
(~5 cycles) L1 miss: Look up
data on next level

L2 cache hit
e -
daTa from L2 cache

(~10 cycles) l

L2 miss: Look up
data in next level

L3 cache hit
-
da‘ra from L3 cache

(~40-60 cycles) l

L3 miss: Look up data
in main mem.

Data line

Main mem. access (~100 cycles) {

Sys'l'em bus Address line

Handling I/0 devices

- I/0 devices

CPU core MMU
Processor TLB miss - Need a way to get processor's attention
et === 5 Look up the translation .
LAY e Ay | indexfrommeinmen. - Interrupts, Interrupt Requests (IRQs), Direct Memory
|_R_ I—s—e r_s_, address TLB hit (~1 cycle)
e} | —— | [imeema] T Access (DMA) controler...

address
L1 cache hit
PE—

data from L1 cache

(+5 cycles) L1 miss: Look up
data on next level IRQs
L2 cache hit -—
daTa from L2 cache <4— | Interrupt
(~10 cycles) Controller . DMA
L2 miss: Look up
data in next level Controller|
L3 cache hit
-«
da‘ra from L3 cache
(~40-60 cycles) l L3 miss: Look up data
in main mem. .
Data line

Main mem. access (~100 cycles) {

Sys'l'em bus Address line

Handling I/0 devices

Execution pipeline
e mmm oo - I/0 devices

while { - Need a way to get processor's attention
IF - Instruction Fetch
ID - Instruction Decode
EXE - Execute Instruction

MEM - Memory Access

- Interrupts, Interrupt Requests (IRQs), Direct Memory
WB - Write back i

Access (DMA) controler...

ip—ip+1 i
P P Instruction RQs
if (Interrupt) { boundary s —
What?? | Tnterropt |
Controller -— DMA
} Controller|

__ Data line

Sys'l'e,m bus Address line

CPU core

Processor

Ee 1T TEg

155 ALU

[Virtual
------ address

Reglsfers | >

b

data from L1 cache
(~5 cycles)

L2 cache hit

daTa from L2 cache
(~10 cycles)

L3 cache hit

data from L3 cache
(~40-60 cycles)

Main mem. access (~100 cycles) {

A
o |t e
[N

_

Interrupt handling

MMU
TLB miss

Page
walker Look up the translation
* * index from main mem.

TLB hit (~1 cycle)
i-TLB | d-TLB B
physical

address

data on next level

_

l L2 miss: Look up

l L1 miss: Look up

data in next level

l L3 miss: Look up data
in main mem.

.

Interrupt Keyboard
Descriptor Tbl. interrupt handler
——]
e Mouse

interrupt handler

——

. Disk
interrupt handler

= [

>

Set up in kernel space
during early boot

see: init_IRQ()

native_load_idt(desc_ptr xdtr)

asm volatile("lidt %0"::"m" (xdtr));

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L84

CPU core

Processor

Ee 1T TEg

155 ALU

[Virtual
------ address

Reglsfers | >

b

data from L1 cache
(~5 cycles)

L2 cache hit

daTa from L2 cache
(~10 cycles)

L3 cache hit

data from L3 cache
(~40-60 cycles)

Main mem. access (~100 cycles) {

A
L1 cache hit

_

Interrupt handling

MMU
TLB miss
Page
walker Look up the translation
* * index from main mem.
TLB hit (~1 cycle)
i-TLB | d-TLB B
physical
address

-

L1 miss: Look up
data on next level

_

L2 miss: Look up
data in next level

l L3 miss: Look up data
in main mem.

Interrupt
Descriptor Tbl.

Current
interrupt # b

#Intr.

!

Regstr. holding the base of IDT

Keyboard
interrupt handler

a—]

Mouse
interrupt handler

[]

Disk
interrupt handler

= [

>

Set up in kernel space
during early boot

see: init_IRQ()

native_load_idt(desc_ptr xdtr)

asm volatile("lidt %0"::"m" (xdtr));

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L84

CPU core

Processor

data from L3 cache

L3 cache hit

Virtual
address
_

A
L1 cache hit

data from L1 cache
(~5 cycles)

L2 cache hit

daTa from L2 cache
(~10 cycles)

(~40-60 cycles)

Main mem. access (~100 cycles) {

Interrupt handling

_
_

MMU
TLB miss
Page
walker Look up the translation
* * index from main mem.
TLB hit (~1 cycle)
i-TLB | d-TLB B
physical
address

-

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

l L3 miss: Look up data
in main mem.

do _handle_interrupt()

- Save CPU registers and interrupt error code (if any)
- Use #intr. and %idtr to execute the appropriate handler
- Restore CPU context

Interrupt
Descriptor Tbl.

Current
interrupt #

#Intr.

!

Regstr. holding the base of IDT

Keyboard
interrupt handler

a—]

Mouse
interrupt handler

[]

Disk
interrupt handler

—— [

>

Set up in kernel space
during early boot

see: init_IRQ()
native_load_idt(desc_ptr xdtr)
asm volatile("lidt %0"::"m" (xdtr));

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L84

CPU core

Processor

data from L3 cache

L3 cache hit

Virtual
address
_

AA
L1 cache hit

data from L1 cache
(~5 cycles)

L2 cache hit

daTa from L2 cache
(~10 cycles)

(~40-60 cycles)

Main mem. access (~100 cycles) {

Interrupt handling

_
_

MMU
TLB miss
Page
walker Look up the translation
* * index from main mem.
TLB hit (~1 cycle)
i-TLB | d-TLB B
physical
address

-

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

l L3 miss: Look up data
in main mem.

do _handle_interrupt()

- Switch to kernel stack,

if in user mode

- Save CPU registers and interrupt error code (if any)

- Use #intr. and %idtr to execute the appropriate handler
- Restore CPU context

Interrupt
Descriptor Tbl.

Current
interrupt # b

#Intr.

!

Regstr. holding the base of IDT

Keyboard
interrupt handler

a—]

Mouse
interrupt handler

[]

Disk
interrupt handler

—— [

>

Set up in kernel space
during early boot

see: init_IRQ()

native_load_idt(desc_ptr xdtr)

asm volatile("lidt %0"::"m" (xdtr));

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L84

Interrupt handling (revised for clarity)

CPU core

MMU
Processor TLB miss
e - Look up the translation
SE ALU : * * index from main mem.
[Virtual
Reg,sms': address - TLB hit (~1 cycle)
_______ physical

Main mem. access (~100 cycles) {

L3 cache hit
-
daTa from L3 cache

(~40-60 cycles)

address
L1 cache hit

data from L1 cache
(~5 cycles) l

L1 miss: Look up
data on next level

-
data from L2 cache
(+10 cycles) l L2 miss: Look up

data in next level

l L3 miss: Look up data
in main mem.

do_handle_interrupt()

- Switch stack
- Kernel stack, if in user mode
- Dedicated stack for critical exceptions
- Save CPU registers
- Save interrupt error code (if any)
- Use #intr. and %idtr to execute the
appropriate interrupt handler
- Restore CPU context

Overview of what's coming...

Introduction (10/10)
Events
- Q1l: When does the OS run?

- Q2: What asynchronous events invoke the OS?
- Q3: What synchronous events invoke the OS?
- Q4: What is POSIX?

- Q5: Why do we need POSIX?

- Q6: What is Linux?

When does the OS run?

The OS is a giant handler of events, which runs in
response on two types of events

When does the OS run?

The OS is a giant handler of events, which runs in
response on two types of events
- Asynchronous events: Events that occur due to reasons

external to the program instructions that the processor
was currently executing = Interrupts

- Synchronous events: Events that occur synchronously as
a result of the execution of a program's instructions

What synchronous events invoke the OS? (revised for clarity)

Exceptions invoking the OS

- Faults: Exceptions that allow the program to be restarted without loss of continuity
Does not break program continuity

Next instruction is the faulting instruction (restart)

The hope is that the OS will be able to "revert the mess" that caused it

Example: Page fault

- Aborts: Exceptions used to report severe errors
- Breaks program continuity
- The processor may be unable report the precise instruction that caused it
- Example: Double fault (invalid mem. access in a fault handler), machine check error
- Traps: Exceptions reported immediately after the execution of a trapping instruction
- Does not break program continuity
- Next instruction is the one following the trapping instruction
- The old way of making system calls!

X86 exceptions vector (addition)

Vector NR Exception/Interrupt Name

0

OV 00N S WN =

Pd pd ped b s e
O b W N = O

n
o

21-31
32-255

Divide Error

Debug Exception

Non-Maskable Interrupt (NMI)
Breakpoint Exception

Overflow Exception

Bound Range Exceeded

Invalid Opcode

Device Not Available (No Math Coprocessor)
Double Fault

Coprocessor Segment Overrun (Legacy)
Invalid TSS

Segment Not Present

Stack-Segment Fault

General Protection Fault (GPF)

Page Fault

Reserved

Virtualization Exception
Reserved
User-Defined Interrupts

Type

Fault

Fault/Trap

Interrupt

Trap

Trap

Fault

g"“:: - From Intel's Software Developer's Manual, p. 3268
au
Abort
Fault
Fault .
Fault - And see kernel/idt.c, for where the page fault
Fault
Fault
Fault

- Check also Tab.-7-4/5: Conditions for a Double Fault

exception handler is one of the first fo be added

Fault

Interrupt

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/kernel/idt.c#L63

What synchronous events invoke the OS? (oddition)

Exceptions invoking the OS
- Faults: Exceptions that allow the program to be restarted without loss of continuity

- Aborts: Exceptions used to report severe errors

- Traps: Exceptions reported immediately after the execution of a trapping instruction

System calls: The interface between user programs and the OS

- Linux x86_64 defines ~500 syscalls and aarch64 ~460:

x86/entry/syscalls/syscall 64.1bl

| / x86 / entry / syscalls / syscall_64.tbl

common
common
common

exit
wait4
kill

sys_exit
sys_wait4
sys_kill

armé4/tools/syscall 64.tbl

/ arch / armé64 / tools

93 common exit sys_exit
94 common exit_group sys_exit_group
95 common waitid sys_waitid

https://elixir.bootlin.com/linux/v6.13.7/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/v6.13.7/source/scripts/syscall.tbl

Syscall argument passing (aarch64 example) (oddition)

DESCRIPTION

_exit(int status): Terminates the calling process...
The value status & OxFF is returned ... as the exit status...

SYSCALL_DEFINE1(exit, int, error_code)

// keep only the last byte, and shift it one byte left
do_exit((error_code&0xff)««8);
}

int main(void) {
__asm_____volatile__ ("mov x0, #123"); // Syscall arg0 to reg. %x0, and so on
__asm_____volatile__ ("mov x8, #93"); // Syscall NR to reg. %x8 (NR 93 is exit)
__asm_____ volatile__ ("svc #0"); // Execute the syscall

}

$./svc_test
$ echo $?
123

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/C/ident/error_code
https://elixir.bootlin.com/linux/v6.14/C/ident/do_exit

Syscall argument passing (x86_64 example) (addition)

DESCRIPTION

_exit(int status): Terminates the calling process...
The value status & OxFF is returned ... as the exit status...

SYSCALL_DEFINE1(exit, int, error_code)

// keep only the last byte, and shift it one byte left
do_exit((error_code&0xff)««8);
}

int main(void) {
__asm_____volatile__ ("mov $123, %rdi"); // Syscall arg0 to reg. %rdi, and so on
__asm___ __volatile__ ("mov $60, %rax"); // Syscall NR to reg. %rax (NR 60 is exit)

__asm_____volatile__ ("syscall"); // Execute the syscall
}
$./syscall_test
$ echo $?

123

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/C/ident/error_code
https://elixir.bootlin.com/linux/v6.14/C/ident/do_exit

How do user programs know what services
an OS offers?

- We need a standard for that

- Portable Operating System Interface for UNIX (POSIX) is the IEEE
standard for portable UNIX-based OS syscall interfaces

How do user programs know what services
an OS offers?

- We need a standard for that

- Portable Operating System Interface for UNIX (POSIX) is the IEEE
standard for portable UNIX-based OS syscall interfaces

- Describes a set of fundamental abstractions needed for portable
application development

How do user programs know what services
an OS offers?

- We need a standard for that

- Portable Operating System Interface for UNIX (POSIX) is the IEEE
standard for portable UNIX-based OS syscall interfaces

- Describes a set of fundamental abstractions needed for portable
application development

- User programs can directly invoke system calls, but going through POSIX
ensures portability across POSIX-compliant OSes.

- User programs must not break on kernel updates
- OK to recompile code, if I move to another OS

- But..don't make me rewrite it

How do user programs know what services
an OS offers?

- We need a standard for that

- Portable Operating System Interface for UNIX (POSIX) is the IEEE
standard for portable UNIX-based OS syscall interfaces

User programs anticipate
a set of common abstractions

User
n from POSIX-compliant systems

space

0S-specific libs with
syscall wrappers provide
POSIX-compliant interfaces

Kernel <
space

What does POSIX define?

POSIX defines ~1,200 interfaces, around the following abstractions

What does POSIX define?

POSIX defines ~1,200 interfaces, around the following abstractions

- Processes: A process is an address space with one or more threads executing within that
and the required system resources for those threads

- Threads: A thread is a single flow of control within a process, with its own system
resources required to support a flow of control

- Files: A file is an object that can be written to, read from, or both

What does POSIX define?

POSIX defines ~1,200 interfaces, around the following abstractions

- Processes: A process is an address space with one or more threads executing within that
and the required system resources for those threads

- Threads: A thread is a single flow of control within a process, with its own system
resources required to support a flow of control

- Files: A file is an object that can be written to, read from, or both

- The complete spec with all definitions is here

https://pubs.opengroup.org/onlinepubs/9799919799/

What is Linux?

- A modern, open-source, POSIX-compliant
OS kernel.

User space

Structure of
File Systems, Mem Management, | the Linux

Networking, Time Management, kernel
Dev. Drivers Storage Mngmnt.

Architecture-dependent code J

Kernel space

What is Linux?

- A modern, open-source, POSIX-compliant
OS kernel.

Q

O

S]

@ - Weritten in '91 by Linus Torvalds from
9 scratch ~100 KLoC (Jan '25: > 40 MLoC).
)

. "

Q

g

o File Systems, = Mem Management, L Smfr_?,::xﬁ

o Networking, Time Management, kernel

E Dev. Drivers Storage Mngmnt.

Architecture-dependent code J

Q
o
o
a
1)

o
Q
]

D
o System calls interface
o
(=]

&

— File Systems, Mem Management,
o Networking, Time Management,
S Dev. Drivers Storage Mngmnt.

V4

Architecture-dependent code

What is Linux?

Structure of
L the Linux
kernel

A modern, open-source, POSIX-compliant
OS kernel.

Written in '91 by Linus Torvalds from
scratch ~100 KLoC (Jan '25: > 40 MLoC).

The most popular Unix-like OS today

Servers: Over 96% of the world's top 1
million websites run on Linux servers

Cloud: AWS, Google Cloud, and Azure rely
heavily on Linux

Supercomputers: Almost 100% of the top
500 supercomputers run Linux

Q

Q
=]

a
1)

o
Q
w
-
o System calls interface
Q
=]
&

— File Systems, = Mem Management,
o Networking, Time Management,
S Dev. Drivers Storage Mngmnt.

V4

Architecture-dependent code

What is Linux?

Structure of
L the Linux
kernel

A modern, open-source, POSIX-compliant
OS kernel.

Written in '91 by Linus Torvalds from
scratch ~100 KLoC (Jan '25: > 40 MLoC).

The most popular Unix-like OS today

Servers: Over 96% of the world's top 1
million websites run on Linux servers.

Cloud: AWS, Google Cloud, and Azure rely
heavily on Linux

Supercomputers: Almost 100% of the top
500 supercomputers run Linux

Android devices: >3 billion devices

Recap

- Introduction (10/10)

- Events
- Q1:
- Q2:
- Q3:
- Q4:
- Q5:
- Q6:

When does the OS run?

What asynchronous events invoke the OS?
What synchronous events invoke the OS?
What is POSIX?

Why do we need POSIX?

What is Linux?

Overview

- We'll start from hardware and follow a question-oriented approach

Runtime [Q: How does a program look like in memory?]

Processes [Q: What is a process?]

IPC [Q: How do processes communicate?]

Threads [Q: What is a thread?]

Synchronization [Q: What goes wrong w/o synchronization?]
Time Management [Q: What is scheduling?]

Memory Management [Q: What is virtual memory?]

Files [Q: What is a file descriptor?]

Storage Management [Q: How do we allocate disk space to files?]

