K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis
Lecture 04

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Administrivia
Where we are today? ~200 ppl.

80
60

40

Students

20

10

11

12

13

14

15

A few clarifications

Difficult class...does not mean difficult to pass

Forget about the grade and make an honest effort

Socialize during the semester, and share your "suffering"

What do you need a good grade without a support network?

Be kind in your perception about others!

Help me out with the team matching, please
More support (labs) coming soon...

So far: We are on-par with any top tier uni offering OSes!

DISCLAIMER

- EMAILs requesting some special "recipe" because for reason
X or Y you cannot participate in the programming assignments

- I respect you reasons, buft...
- It is impossible to do something both convenient for you
and also fair for the majority
- If you wish to pass this class w/o the programming
assignments, you should come on September
- Final exam: 100% credit
- Programming assignment requirement: None

- T will reply to no more such emails.

Overview

- We'll start from hardware and follow a question-oriented approach

Runtime [Q: How does a program look like in memory?]

Processes [Q: What is a process?]

IPC [Q: How do processes communicate?]

Threads [Q: What is a thread?]

Synchronization [Q: What goes wrong w/o synchronization?]
Time Management [Q: What is scheduling?]

Memory Management [Q: What is virtual memory?]

Files [Q: What is a file descriptor?]

Storage Management [Q: How do we allocate disk space to files?]

Overview

- Runtime [Q: How does a program look like in memory?]
- Q1: How does a program look like in memory?
- Q2: Who sets up a program in memory? and how?
- Q3: Static vs dynamic linking?

How does a program look like in memory?

Program's view of memory

Static
segments

-

Dynamic
segments

How does a program look like in memory?

Program's view of memory . - , . .
- Static Segments: Their size is static during runtime

.text segment (code)

text: Executable instr. of the program—read-execute perms

Static
segments

-

rodata: Constant values—read-only perms

.data: Initialized global and static variables—read-write perms

bss: Uninitialized global and static variables—read-write perms

Dynamic
segments

How does a program look like in memory?

Program's view of memory . - . . ,
- Static Segments: Their size is static during runtime

.text segment (code)

text: Executable instr. of the program—read-execute perms

Static
segments

-

rodata: Constant values—read-only perms

.data: Initialized global and static variables—read-write perms

bss: Uninitialized global and static variables—read-write perms

Higher = Dynamic segments: Their size can grow during runtime
addr.

- Heap: Grows (commonly) towards higher addresses and contains
variables dynamically allocated—read-write perms

Dynamic
segments

- . Grows (commonly) towards lower addresses and is used
for bookkeeping during function calls—read-write perms

How does a program look like in
OS view

Program's view of memory

—

Static
segments

-

Dynamic
segments

Stack

!

Higher
addr.

Executable
instructions

Higher mem
addresses

RLIMIT_STACK \
default: 8MB Stack :

High 168

memory?

<«— start_code

<— start_data
<— end_data

<«— start_brk

<— brk

<— mmap_base

<«— Sp

<«— start_stack

How does a program look like in memory?
OS view

<«— start_code

instructions

Program's view of memory Exccutable {

<— start_data

—

Static <— end_data
segments
<— start_brk
Higher mem
addresses <«— brk
Higher
addr.
Dynamic <— mmap_base
segments
4 RLIMIT_STACK <«— Sp
] default: 8MB Stack ?
Stack i '
g ' <«— start_stack

High 16B Metadata the OS keeps

for each running program

How does a program

char uninitialized_global[100];

const char *message = "Hello, World!\n";

void foo() {
unsigned long Sp;

asm__ (
"mov %0, sp"
"=r" (sp)

);

print£("

}

void main() {

unsigned long Sp;
print£("
print£("
_asm__(

"mov %0, sp"

"=r" (sp)
);

, SP);

", message);
", &uninitialized_global);

char *heap = (char *)malloc(50 * sizeof(char));

print£("
print£("

foo();

" heap);
n, Sp),

look like in memory?

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

How does a program look like in memory?

char uninitialized_global[100];
const char *message = "Hello, World!\n";

void foo() {
unsigned long Sp;
_asm__(
"mov %0, sp"
"=r" (sp)
);
print£("

}

void main() {
unsigned long Sp;

print£(" ", message);
print£(" ", &uninitialized_global);
__asm__(

"mov %0, sp”

:"=r"(sp)
)

, SP);

char *heap = (char *)malloc(50 * sizeof(char));

print£(" ", heap);
print£(" ", sp);
foo();

=» cat /proc/1245382/maps

aaaadcda0000-aaaadcda1000 r-xp
aaaadcdb0000-aaaadcdb1000 r--p
aaaadcdb1000-aaaadcdb2000 rw-p
aaaaed20d000-aaaaed22e000 rw-p
ffffoe610000-ffffbe798000 r-xp
ffffoe798000-ffffbe7a7000 ---p
ffffoe7a7000-ffffoe7ab000 r--p
ffffoe7ab000-ffffoe7ad000 rw-p
ffffoe7ad000-ffffoe7b9000 rw-p ...
fffff6461000-fffff6482000 rw-p ... [stack]

= _./sample
@ .rodata variable: Oxaaaadcdb0100

los/lsample [.text]

... loslsample [.rodata]
... los/sample [.bss, .data]
... [heap]

... lusr/lib/libc.s0.6

... lusr/lib/libc.s0.6

... lusr/lib/libc.s0.6
... lusr/lib/libc.s0.6

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

How does a program look like in memory?

char uninitialized_global[100];
const char *message = "Hello, World!\n";

void foo() {
unsigned long Sp;
_asm__(
"mov %0, sp"
"=r" (sp)
);
print£("

}

void main() {
unsigned long Sp;

printf(" ", message);
print£(" ", &uninitialized_global);
__asm__(

"mov %0, sp"

:"=r"(sp)
)

, SP);

char *heap = (char *)malloc(50 * sizeof(char));

print£(" ", heap);
print£(" ", sp);
foo();

=» cat /proc/1245382/maps

aaaadcda0000-aaaadcda1000 r-xp
aaaadcdb0000-aaaadcdb1000 r--p
aaaadcdb1000-aaaadcdb2000 rw-p
aaaaed20d000-aaaaed22e000 rw-p

fffflbe610000-ffffoe798000
fffflbe798000-ffffoe7a7000
ffffbe7a7000-ffffoe7ab000
ffffbe7ab000-ffffbe7ad000
ffffbe7ad000-ffffoe7b9000

fffff6461000-fffff6482000 rw-p

= _./sample

los/lsample [.text]
... loslsample [.rodata]
... los/sample [.bss, .data]
... [heap]

r-xp ... lusr/lib/libc.s0.6
--p ... lusr/lib/libc.s0.6
r--p ... lusr/lib/libc.s0.6
rw-p ... /usr/lib/libc.s0.6
rw-p

.. .- tétack]

@ .rodata variable: Oxaaaadcdb0100
@ .bss variable: O0xaaaadcdb1020

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

How does a program look like in memory?

char uninitialized_global[100];
const char *message = "Hello, World!\n";

void foo() {
unsigned long Sp;
_asm__(
"mov %0, sp"
"=r" (sp)
);
print£("

}

void main() {
unsigned long Sp;
print£(" ", message);

print£(" ", &uninitialized_global);

__asm__(
"mov %0, sp"
: ll=rll (Sp)

)

char *heap = (char *)malloc(50 * sizeof(char));

print£(" ", heap);
print£(" ", sp);
foo();

, SP);

=» cat /proc/1245382/maps

aaaadcda0000-aaaadcda1000 r-xp ... /os/sample [.text]
aaaadcdb0000-aaaadcdb1000 r--p ... /os/sample [.rodata]
aaaadcdb1000-aaaadcdb2000 rw-p ... /os/sample [.bss, .data]
aaaaed20d000-aaaaed22e000 rw-p ... [heap]

ffffoe610000-ffffbe798000 r-xp ... lusrl/lib/libc.s0.6
fffflbe798000-ffffoe7a7000 ---p ... lusr/lib/libc.s0.6
ffffoe7a7000-ffffoe7ab000 r--p ... lusr/lib/libc.s0.6
ffffoe7ab000-ffffoe7ad000 rw-p ... /usr/lib/libc.s0.6

fffbe7ad000-fffbe7b9000 rw-p ...
ffff6461000-ffff6482000 rw-p ... [stack]

= _./sample

@ .rodata variable: Oxaaaadcdb0100
@ .bss variable: O0xaaaadcdb1020
@ heap variable: Oxaaaaed20d6b0

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

How does a program look like in memory?

char uninitialized_global[100];
const char *message = "Hello, World!\n";

void foo() {
unsigned long Sp;
_asm__(
"mov %0, sp"
"=r" (sp)
);
print£("
}

void main() {
unsigned long Sp;

printf(" ", message);
print£(" ", &uninitialized_global);
__asm__(

"mov %0, sp"

"= (sp)

);

char *heap = (char *)malloc(50 * sizeof(char));
printf(" ", heap);

print£(" ", sp);

foo();

, SP);

=» cat /proc/1245382/maps

aaaadcda0000-aaaadcda1000 r-xp
aaaadcdb0000-aaaadcdb1000 r--p
aaaadcdb1000-aaaadcdb2000 rw-p
aaaaed20d000-aaaaed22e000 rw-p

ffffbe610000-ffffoe 798000
ffffbe798000-ffffoe7a7000
ffffbe7a7000-ffffoe7ab000
ffffbe7ab000-ffffoe7ad000
ffffbe7ad000-ffffoe7b9000

= _./sample

los/sample [.text]
... loslsample [.rodata]
... los/sample [.bss, .data]

... [heap]
r-xp ... lusr/lib/libc.s0.6
---p ... lusr/lib/libc.s0.6
r--p ... lusr/lib/libc.so.6
rw-p ... /usr/lib/libc.s0.6

rw-p

@ .rodata variable: Oxaaaadcdb0100
@ .bss variable: O0xaaaadcdb1020
@ heap variable: Oxaaaaed20d6b0

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

How does a program look like in memory?

char uninitialized_global[100];
const char *message = "Hello, World!\n";

void foo() {
unsigned long Sp;
_asm__(
"mov %0, sp"
"=r" (sp)
);
print£("
}

void main() {
unsigned long Sp;

printf(" ", message);
print£(" ", &uninitialized_global);
__asm__(

"mov %0, sp"

"= (sp)

);

char *heap = (char *)malloc(50 * sizeof(char));
printf(" ", heap);

print£(" ", sp);

foo();

, SP);

=» cat /proc/1245382/maps

aaaadcda0000-aaaadcda1000 r-xp
aaaadcdb0000-aaaadcdb1000 r--p
aaaadcdb1000-aaaadcdb2000 rw-p
aaaaed20d000-aaaaed22e000 rw-p

ffffbe610000-ffffoe 798000
ffffbe798000-ffffoe7a7000
ffffbe7a7000-ffffoe7ab000
ffffbe7ab000-ffffoe7ad000
ffffbe7ad000-ffffoe7b9000

= _./sample

los/sample [.text]
... loslsample [.rodata]
... los/sample [.bss, .data]

... [heap]
r-xp ... lusr/lib/libc.s0.6
--p ... lusr/lib/libc.s0.6
r--p ... lusr/lib/libc.so.6
rw-p ... /usr/lib/libc.s0.6

rw-p

@ .rodata variable: Oxaaaadcdb0100
@ .bss variable: O0xaaaadcdb1020
@ heap variable: Oxaaaaed20d6b0

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

How does a program look like in memory?

Program's view of memory

Static

segments

Dynamic
segments

.text segment (code)

Higher
addr.

Stack i

= cat /proc/1245382/maps

aaaadcda0000-aaaadcda1000 r-xp ... /os/sample [.text]
aaaadcdb0000-aaaadcdb1000 r--p ... /os/sample [.rodata]
aaaadcdb1000-aaaadcdb2000 rw-p ... /os/sample [.bss, .data]
aaaaed20d000-aaaaed22e000 rw-p ... [heap]

ffffoe610000-ffffbe798000 r-xp ... lusrl/lib/libc.s0.6
fffflbe798000-ffffoe7a7000 ---p ... lusr/lib/libc.s0.6
ffffoe7a7000-ffffoe7ab000 r--p ... lusr/lib/libc.s0.6
ffffbe7ab000-ffffoe7ad000 rw-p ... /usr/lib/libc.s0.6

ffffbe7ad000-ffffoe7b9000 rw-p ...
fffff6461000-fffff6482000 rw-p ... [stack]

= ./sample

@ .rodata variable: 0xaaaadcdb0010

@ .bss variable: Oxaaaadcdb1020 > Oxaaaadcdb0010

@ heap variable: Oxaaaaed20d6b0

@ main — Current sp: fffff64810e0

@ foo - Current sp: fffff64810c0 < fffff64810e0 (main's sp)

Who sets up the program in memory?

Who sets up the program in memory?

- The loader is responsible for loading a program into memory (code here)

https://elixir.bootlin.com/linux/v6.13.7/source/fs/binfmt_elf.c

Who sets up the program in memory?

- The loader is responsible for loading a program into memory (code here)

- Reads a program from storage (called an executable), "interprets" it,
and sets up the appropriate segments it in memory
- We need a specification o serve as the contract (interface)
between executables and the loader

- ELF: The Executable and Linkable Format (ELF)

https://elixir.bootlin.com/linux/v6.13.7/source/fs/binfmt_elf.c

Who sets up the program in memory?

- The loader is responsible for loading a program into memory (code here)

- Reads a program from storage (called an executable), "interprets" it,
and sets up the appropriate segments it in memory

- A ELF executable loaded in memory will be called a process soon
- The static segments are initialized by copying from the ELF

- The default dynamic segments are laid out by the loader, and
the OS intervenes fo manage them

https://elixir.bootlin.com/linux/v6.13.7/source/fs/binfmt_elf.c

Who sets up the program in memory?

- The loader is responsible for loading a program into memory (code here)

- Reads a program from storage (called an executable), "interprets" it,
and sets up the appropriate segments it in memory

- A ELF executable loaded in memory will be called a process soon
- The loader transfers control to the ELF's entry point (e.g., _start)

https://elixir.bootlin.com/linux/v6.13.7/source/fs/binfmt_elf.c

Who sets up the program in memory?

- The loader is responsible for loading a program into memory (code here)

- Reads a program from storage (called an executable), "interprets" it,
and sets up the appropriate segments it in memory

- A ELF executable loaded in memory will be called a process soon

- The loader transfers control to the ELF's entry point (e.g., _start)
- If the executable is statically linked, the loader's job is complete

https://elixir.bootlin.com/linux/v6.13.7/source/fs/binfmt_elf.c

Static linking

=» gcc -S hello.c = gcc -c hello.s = hello.o
=» readelf -s hello.o

Table of all global, exported symbols with offset and section number

Num: Value Size Type Bind Vis Ndx Name
2: 0000000000000000 O SECTION LOCAL DEFAULT 1 .text
hello.c 3: 0000000000000000 O SECTION LOCAL DEFAULT 3 .data

4: 0000000000000000 O SECTION LOCAL DEFAULT 4 .bss

extern void foo(int);
() 10: 0000000000000000 32 FUNC GLOBAL DEFAULT 1 bar

int bar(int a){ 11: 0000000000000020 36 FUNC GLOBAL DEFAULT 1 main
a+=1: 12: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND foo
} return g = nm hello.o
void main(void) # If don't need fuu ::gchonahty of readelf, use nm
£oo(1); 0000000000000000 T bar
bar(2); 0000000000000020 T main
} =» gcc -0 exe foo.o hello.o

= nm exe
All relocations from statically-linked objects are resolved

0000000000000758 T foo
0000000000000714 T bar
0000000000000734 T main

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

Static linking: The problem

Statically-linked

executable A

instruction
instruction
instruction

instruction

instruction
instruction

Statically-linked
executable C

instruction B

!nsfrucf!on Code specific to the

instruction ~ implementation of
program B

Code specific to the
— implementation of

std lib libc Code specific to the

— implementation of
std lib libc

Again :-(

Code specific to the
— implementation of
std lib libm

Statically-linked
executable B

instruction
instruction
instruction

instruction
instruction
instruction

Code specific to the
implementation of
program B

Code specific to the
implementation of
std lib libc

Again :-(

Who sets up the program in memory?

- The loader is responsible for loading a program into memory (code here)

- Reads a program from storage (called an executable), "interprets" it,
and sets up the appropriate segments it in memory

- A ELF executable loaded in memory will be called a process soon

- The loader transfers control tfo the ELFs entry point (e.g., _start)
- If the executable is statically linked, the loader's job is complete

https://elixir.bootlin.com/linux/v6.13.7/source/fs/binfmt_elf.c

Dynamic linking

=» gcc -S hello.c = gcc -c hello.s = hello.o
=» readelf -s hello.o

Table of all global, exported symbols with offset and section number

Num: Value Size Type Bind Vis Ndx
2: 0000000000000000 O SECTION LOCAL DEFAULT 1
3: 0000000000000000 O SECTION LOCAL DEFAULT 3
4: 0000000000000000 O SECTION LOCAL DEFAULT 4

10: 0000000000000000 32 FUNC GLOBAL DEFAULT
11: 0000000000000020 36 FUNC GLOBAL DEFAULT 1
12: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND

= nm hello.o

If don't need full functionality of readelf, use nm
U foo

0000000000000000 T bar

0000000000000020 T main

=» gcc -o exe foo.o hello.o
=» nm exe

All relocations from statically-linked objects are resolved

0000000000000758 T foo
0000000000000714 T bar
0000000000000734 T main

Name

text
.data
.bss

bar
main
foo

- What if we know how
to find this at runtime?

Dynamic linking

=» gcc -S hello.c = gcc -c hello.s = hello.o
=» readelf -s hello.o

Table of all global, exported symbols with offset and section number

Num: Value Size Type Bind Vis Ndx
2: 0000000000000000 O SECTION LOCAL DEFAULT 1
3: 0000000000000000 O SECTION LOCAL DEFAULT 3
4: 0000000000000000 O SECTION LOCAL DEFAULT 4

10: 0000000000000000 32 FUNC GLOBAL DEFAULT
11: 0000000000000020 36 FUNC GLOBAL DEFAULT 1
12: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND

= nm hello.o

If don't need full functionality of readelf, use nm

—» U foo
0000000000000000 T bar
0000000000000020 T main
=» gcc -o exe foo.o hello.o
=» nm exe

All relocations from statically-linked objects are resolved

0000000000000758 T foo
0000000000000714 T bar
0000000000000734 T main

Name

text
.data
.bss

bar
main
foo

- What if we know how
to find this at runtime?

- Well...another drama
starts...

Dynamic linking

=» gcc -S hello.c = gcc -c hello.s = hello.o
=» readelf -s hello.o

Table of all global, exported symbols with offset and section number

Num: Value Size Type Bind Vis

2: 0000000000000000 O SECTION LOCAL DEFAULT
3: 0000000000000000 O SECTION LOCAL DEFAULT
4: 0000000000000000 O SECTION LOCAL DEFAULT

10: 0000000000000000 32 FUNC GLOBAL DEFAULT
11: 0000000000000020 36 FUNC GLOBAL DEFAULT
12: 0000000000000000 0 NOTYPE GLOBAL DEFAULT

= nm hello.o

If don't need full functionality of readelf, use nm

—» U foo
0000000000000000 T bar
0000000000000020 T main

Ndx
1
3
4

UND

Name

text
.data
.bss

bar
main
foo

Who sets up the program in memory?

- The loader is responsible for loading a program into memory (code here)

- Reads a program from storage (called an executable), "interprets" it,
and sets up the appropriate segments it in memory

- A ELF executable loaded in memory will be called a process soon

- The loader transfers control tfo the ELFs entry point (e.g., _start)
- If the executable is statically linked, the loader's job is complete

- The dynamic linker resolves symbols at runtime
- Specified in the .interp section of the ELF (e.g., |d-linux.s0)

- Yet another time we deferred stuff for later

http://ld-linux.so
https://elixir.bootlin.com/linux/v6.13.7/source/fs/binfmt_elf.c

Dynamic Linking / Loading

Memory Dynamically-linked executable B

instruction
instruction
instruction

instruction
instruction

Dynamically-linked

executable A instruction

instruction
instruction
instruction

instruction /
instruction

instruction

instruction
instruction
instruction

instruction
instruction
instruction

instruction

instruction
instruction

Dynamically-linked
executable C

instruction
instruction
instruction

instruction
instruction
instruction

