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Administrivia
- Where we are today? 52 teams…

- Drop those kernels boi
- Team Rocket
- Οι ωραίοι έχουν χρέη!
- Skordopsomo
- Syscall Syndicate
- Printer Hate Club
- Συστουργικα Λειτηματα
- Panic! In the Kernel
- GadaffiOS
- We dont byte
- Onlyfun
- Too Legit to Buffer (TLB)
- The Deadlocks
- Tow and a half man

               ...



FINAL DISCLAIMER

- Without a team for the programming assignments at this 
point, the only option is September

- Final exam: 100% credit
- Other requirements? None



Overview
- We'll start from hardware and follow a question-oriented approach 

- Intro [Q: What is an OS?] 
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]
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Overview
- Processes

- Q1: What is a process?
- Q2: Why use a process?
- Q3: What are the components of a process?
- Q4: How do we create a process?
- Q5: How do we run a program?
- Q6: What are the possible states a process could be in?
- Q7: How does the OS run multiple processes simultaneously?

                 …



The process abstraction
- What is a process? "An address space with one or more threads 
executing within it." (Strict POSIX definition, 3/189.)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
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The process abstraction
- What is a process? "An address space with one or more threads 
executing within it." (Strict POSIX definition, 3/189.)

- Popularized in 1974, in the context of the Bell Labs paper called "The 
UNIX Time-Sharing System."
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https://dl.acm.org/doi/10.1145/361011.361061
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The process abstraction
- What is a process? "An address space with one or more threads 
executing within it." (Strict POSIX definition, 3/189.)

- Popularized in 1974, in the context of the Bell Labs paper called "The 
UNIX Time-Sharing System."

- In simple words: A process is an instance of a program in execution
- A program is a recipe ⇒ A process is the mess in your kitchen

- How we use it?
- Want to run a program? Use a process
- Want to run multiple programs? Use multiple processes

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://dl.acm.org/doi/10.1145/361011.361061
https://dl.acm.org/doi/10.1145/361011.361061
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The process abstraction
- Why we love it? The definite illusion: User programs can be 

written as if they will get isolated access to all system resources
- Noone else will exist in memory

- Remember printf("%x | %d\n", &x, x) from quiz01?
- Two processes may see a different value at the same virt. address

- Noone else will be using the processor
- Remember preemption and this timer ticking? 
- Every process has its own "virtual" processor time

- Noone else will be using using the storage
- This is for later, but the ideas are similar…
- Every process may read from a file as if no other is writing to it 



Components of a process
- Process Control Block (PCB): A struct used by the OS to

     keep track of each running process (see task_struct)

,,,OS kernel
… PCBs

...

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
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Components of a process
- Process Control Block (PCB): A struct used by the OS to

     keep track of each running process (see task_struct)
- Virtual Address Space (see struct_mm): A linear array of bytes with all 

static and dynamic segments in virtual memory of a running process
- Execution state (see thread_struct): An instruction pointer, a stack 

pointer, and a set of general-purpose registers with their values
- Control metadata: Scheduling (see sched_entity and sched_statistics), 

identity (see struct_cred), and more...
- Shared system resources: Open files (see files_struct) and open network 

connections (see struct_sock), and more...
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Process creation: To POSIX

DESCRIPTION 

pid_t fork(void): Creates a new process by duplicating the calling process
- Returns process ID (PID) of the new process in the "parent” process
- Returns 0 in the “child” process

SYSCALL_DEFINE0(fork)
{

…
return kernel_clone(&args);

}

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/source/kernel/fork.c#L2774
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Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

- Pause the current process and save its state
- Duplicate its address space and its PCB
- Add the new PCB to the in-kernel queue of PCBs
- Use the return value to diverge
- Requires distinguished init process...

- Creating a new process from scratch
- Create and initialize a new PCB
- Add a new PCB to the in-kernel queue of PCBs
- Does not require a distinguished process...but….



Process creation: Not to POSIX

DESCRIPTION    

CreateProcessA: Creates a new process and its primary thread

 BOOL CreateProcessA(
  [in, optional]      LPCSTR                lpApplicationName,
  [in, out, optional] LPSTR                 lpCommandLine,
  [in, optional]      LPSECURITY_ATTRIBUTES lpProcessAttributes,
  [in, optional]      LPSECURITY_ATTRIBUTES lpThreadAttributes,
  [in]                BOOL                  bInheritHandles,
  [in]                DWORD                 dwCreationFlags,
  [in, optional]      LPVOID                lpEnvironment,
  [in, optional]      LPCSTR                lpCurrentDirectory,
  [in]                LPSTARTUPINFOA        lpStartupInfo,
  [out]               LPPROCESS_INFORMATION lpProcessInformation

);



The elegant simplicity of POSIX!
DESCRIPTION    

pid_t fork(void): Creates a new process by duplicating the        
                              calling process

- Returns process ID of new process in the "parent” process
- Returns 0 in the “child” process

SYSCALL_DEFINE0(fork)
{

…
return kernel_clone(&args);

}

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/source/kernel/fork.c#L2774
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⇒ 
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Process states

- A POSIX process has an execution state which indicates what 
the process is currently "doing"

- Each process' PCB is queued on the respective queue

- As the process executes ⇒ It transitions from state to state
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Process states
- Ready: The process is ready to be executed, but it's not executing yet 
because another process is using the processor
- Waiting (blocked): The process is waiting for an async event to 
complete  (e.g., a disk I/O), and cannot progress until the event completes
- Running: The process is executing on the processor until either 

- (i) An async event is required ⇒the process transitions to the "waiting" queue
- (ii) It exceeds its maximum quantum ⇒ a scheduler interrupt occurs 

- Terminated: The process finished execution
- Normally: By calling exit after its parent has called wait
- As a "zombie:" The parent exists, but hasn't called wait() yet
- Orphan: The parent has exited already
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Process dispatching

- Many processes in memory
- One allocated on the processor 
- Our goal: Give each process the illusion it has the full processor
- In other words: Run multiple processes simultaneously
- Timesharing dispatching loop: Preemption — periodic timer interrupt

  

do {
Get a process P from ready queue

Execute P until time Q expires
Put  P back in ready queue

} while(1)

Multiprogramming
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- Add PCB of P2 in ready queue

- Save processor state on PCB of P2

  

- Select P2

  - Load PCB of P2 and start execution 

  - Interrupt P2 after Q amount of execution time

Ctx switch 
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- Select P6

  - Load PCB of P6 and start execution 

  - Interrupt P6 after Q amount of execution time
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Process dispatching

Dispatch P2

Ready queue
ProcessorP1 P2P5P4P6 P3

Dispatch P6

Scheduler 
interrupt

Ready queue

P1
P6P5P4P2

P3

- Add PCB of P2 in ready queue

- Save processor state on PCB of P2

  

- Select P2

  - Load PCB of P2 and start execution 

  - Interrupt P2 after Q amount of execution time

Ctx switch 
P2→ P6- Select P6

  - Load PCB of P6 and start execution 

  - Interrupt P6 after Q amount of execution time

Time

  

Processor

...

...

Scheduler 
interrupt


