K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis
Lecture 05

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Administrivia

Where we are today? 52 teams...
- Drop those kernels boi
- Team Rocket
- O1 wpaiol £xouv xpén!
- Skordopsomo
- Syscall Syndicate
- Printer Hate Club
- ZvuoToupyika Asitnpara
- Panic! In the Kernel
- GadaffiOS
- We dont byte
- Onlyfun
- Too Legit to Buffer (TLB)
- The Deadlocks
- Tow and a half man

FINAL DISCLAIMER

- Without a feam for the programming assignments at this
point, the only option is September

- Final exam: 100% credit
- Other requirements? None

Overview

- We'll start from hardware and follow a question-oriented approach

- Processes [Q: What is a process?]

- IPC [Q: How do processes communicate?]

- Threads [Q: What is a thread?]

- Synchronization [Q: What goes wrong w/o synchronization?]

- Time Management [Q: What is scheduling?]

- Memory Management [Q: What is virtual memory?]

- Files [Q: What is a file descriptor?]

- Storage Management [Q: How do we allocate disk space to files?]

—| - Processes [Q: What is a process?]

Overview

- We'll start from hardware and follow a question-oriented approach

- IPC [Q: How do processes communicate?]

- Threads [Q: What is a thread?]

- Synchronization [Q: What goes wrong w/o synchronization?]

- Time Management [Q: What is scheduling?]

- Memory Management [Q: What is virtual memory?]

- Files [Q: What is a file descriptor?]

- Storage Management [Q: How do we allocate disk space to files?]

Overview

- Processes

Ql: What is a process?

Q2: Why use a process?

Q3: What are the components of a process?

Q4: How do we create a process?

Q5: How do we run a program?
Q6: What are the possible states a process could be in?
Q7: How does the OS run multiple processes simultaneously?

The process abstraction

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

Virtual Address Space (VAS)

OS view (the reality)

<— start_code

] H Executable
Process S view instructions {
<— start_data
<— end_data
Static
segments <«— start_brk
Higher mem
addresses <— brk
Higher
addr. <— mmap_base
Dynamic
segments
RLIMIT_STACK) -— Sp
) default: 8MB Stack |
Stack i <— start_stack
_ _ High 168 Metadata the OS keeps

for each running program

The process abstraction

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

- Popularized in 1974, in the context of the Bell Labs paper called " The
UNIX Time-Sharing System."

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://dl.acm.org/doi/10.1145/361011.361061
https://dl.acm.org/doi/10.1145/361011.361061

The process abstraction

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

- Popularized in 1974, in the context of the Bell Labs paper called " The
UNIX Time-Sharing System."

- In simple words: A process is an instance of a program in execution
- A program is a recipe = A process is the mess in your kitchen

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://dl.acm.org/doi/10.1145/361011.361061
https://dl.acm.org/doi/10.1145/361011.361061

The process abstraction

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

- Popularized in 1974, in the context of the Bell Labs paper called " The
UNIX Time-Sharing System."

- In simple words: A process is an instance of a program in execution
- A program is a recipe = A process is the mess in your kitchen

- How we use it?
- Want to run a program? Use a process
- Want to run multiple programs? Use multiple processes

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://dl.acm.org/doi/10.1145/361011.361061
https://dl.acm.org/doi/10.1145/361011.361061

The process abstraction

- Why we love it?

The process abstraction

- Why we love it? The definite illusion: User programs can be
written as if they will get isolated access to all system resources

The process abstraction

- Why we love it? The definite illusion: User programs can be
written as if they will get isolated access to all system resources
- Noone else will exist in memory
- Remember printf(" ", &x, x) from quiz01?
- Two processes may see a different value at the same virt. address

The process abstraction

- Why we love it? The definite illusion: User programs can be

written as if they will get isolated access to all system resources
- Noone else will exist in memory

- Remember printf(" ", &x, x) from quiz01?

- Two processes may see a different value at the same virt. address
- Noone else will be using the processor

- Remember preemption and this timer ticking?

- Every process has its own "virtual" processor time

The process abstraction

Why we love it? The definite illusion: User programs can be
written as if they will get isolated access to all system resources
Noone else will exist in memory

- Remember printf(" ", &x, x) from quiz01?

- Two processes may see a different value at the same virt. address
Noone else will be using the processor

- Remember preemption and this timer ticking?

- Every process has its own "virtual" processor time

Noone else will be using using the storage

- This is for later, but the ideas are similar...
- Every process may read from a file as if no other is writing to it

Components of a process

- Process Control Block (PCB): A struct used by the OS to
keep track of each running process (see task struct)

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791

Components of a process

- Process Control Block (PCB): A struct used by the OS to
keep track of each running process (see task struct)

- Virtual Address Space (see struct _mm): A linear array of bytes with all
static and dynamic segments in virtual memory of a running process

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
https://elixir.bootlin.com/linux/v6.14/source/include/linux/mm_types.h#L805

Components of a process

- Process Control Block (PCB): A struct used by the OS to
keep track of each running process (see task struct)

- Virtual Address Space (see struct _mm): A linear array of bytes with all
static and dynamic segments in virtual memory of a running process

- Execution state (see thread struct): Aninstruction pointer, a stack
pointer, and a set of general-purpose registers with their values

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
https://elixir.bootlin.com/linux/v6.14/source/include/linux/mm_types.h#L805
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/include/asm/processor.h#L457

Components of a process

- Process Control Block (PCB): A struct used by the OS to
keep track of each running process (see task struct)

- Virtual Address Space (see struct _mm): A linear array of bytes with all
static and dynamic segments in virtual memory of a running process

- Execution state (see thread struct): An instruction pointer, a stack
pointer, and a set of general-purpose registers with their values

- Control metadata: Scheduling (see sched entity and sched statistics),
identity (see struct cred), and more...

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
https://elixir.bootlin.com/linux/v6.14/source/include/linux/mm_types.h#L805
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/include/asm/processor.h#L457
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L547
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L505
https://elixir.bootlin.com/linux/v6.14/source/include/linux/cred.h#L111

Components of a process

- Process Control Block (PCB): A struct used by the OS to
keep track of each running process (see task struct)

- Virtual Address Space (see struct _mm): A linear array of bytes with all
static and dynamic segments in virtual memory of a running process

- Execution state (see thread struct): Aninstruction pointer, a stack
pointer, and a set of general-purpose registers with their values

- Control metadata: Scheduling (see sched entity and sched statistics),
identity (see struct cred), and more...

- Open files (see files_struct) and open network
connections (see struct sock), and more...

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
https://elixir.bootlin.com/linux/v6.14/source/include/linux/mm_types.h#L805
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/include/asm/processor.h#L457
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L547
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L505
https://elixir.bootlin.com/linux/v6.14/source/include/linux/cred.h#L111
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L1161
https://elixir.bootlin.com/linux/v6.14/source/include/linux/net.h#L117

Process creation: To POSIX or not to POSIX?

- Create a new process by cloning an existing process

Process creation: To POSIX or not to POSIX?

- Create a new process by cloning an existing process
- Pause the current process and save its state
- Duplicate its address space and its PCB

Process creation: To POSIX or not to POSIX?

- Create a new process by cloning an existing process
- Pause the current process and save its state
- Duplicate its address space and its PCB
- Add the new PCB to the in-kernel queue of PCBs
- Use the return value to diverge

Process creation: To POSIX or not to POSIX?

- Create a new process by cloning an existing process
- Pause the current process and save its state

Duplicate its address space and its PCB

Add the new PCB to the in-kernel queue of PCBs

Use the return value to diverge

Requires distinguished init process...

Process creation: To POSIX

DESCRIPTION

pid_t fork(void): Creates a new process by duplicating the calling process

- Returns process ID (PID) of the new process in the "parent” process
- Returns O in the "child" process

SYSCALL_DEFINEO(fork)
{

return kernel clone(&args);

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/source/kernel/fork.c#L2774

Process creation: To POSIX
int fork ()

- Creates a new process by duplicating the calling process
- Returns: Pid of the new process in "parent” process

. . Ti_rr_\e
- Returns: O in the "child” process X P1: fork

@ €

Process creation: To POSIX
int fork ()

- Creates a new process by duplicating the calling process
- Returns: Pid of the new process in "parent” process

- Returns: O in the "child” process P1: fork

int waitpid (int pid, int *stat, ...) €
- pid: process to wait for, or -1 for all ‘ -
- stat: will contain exit value, or signal

- Returns process ID, or -1 on error \/‘ P1: wait

Process creation: To POSIX

int fork ()
- Creates a new process by duplicating the calling process
- Returns: Pid of the new process in "parent” process Time
- Returns: O in the "child" process T P1: fork
int waitpid (int pid, int *stat, ...) €
- pid: process to wait for, or -1 for all ‘ b2
- stat: will contain exit value, or signal .
- Returns process ID, or -1 on error \%l PL: wait
void exit (int status) ‘ -
- status: shows up in waitpid (shifted) /P2 exit
- Current process ceases to exist
- Convention: pass O on success, non-zero on error

Y

Process creation: To POSIX
int fork ()

- Creates a new process by duplicating the calling process
- Returns: Pid of the new process in "parent” process

Time

- Returns: O in the "child" process T p1: fork
int waitpid (int pid, int *stat, ...) €
- pid: process to wait for, or -1 for all ‘ b2
- stat: will contain exit value, or signal .
- Returns process ID, or -1 on error \%l P1: wait
void exit (int status) ‘ .
- status: shows up in waitpid (shifted)) P2iexit
- Current process ceases to exist
- Convention: pass O on success, hon-zero on error P1: wait returns

\ status of P2 exit

Process creation: To POSIX or not to POSIX?

- Create a new process by cloning an existing process
- Pause the current process and save its state

Duplicate its address space and its PCB

Add the new PCB to the in-kernel queue of PCBs

Use the return value to diverge

Requires distinguished init process...

- Creating a new process from scratch

Process creation: To POSIX or not to POSIX?

- Create a new process by cloning an existing process
- Pause the current process and save its state

Duplicate its address space and its PCB

Add the new PCB to the in-kernel queue of PCBs

Use the return value to diverge

Requires distinguished init process...

- Create and initialize a new PCB

Process creation: To POSIX or not to POSIX?

- Create a new process by cloning an existing process
- Pause the current process and save its state

Duplicate its address space and its PCB

Add the new PCB to the in-kernel queue of PCBs

Use the return value to diverge

Requires distinguished init process...

- Create and initialize a new PCB
- Add a new PCB 1o the in-kernel queue of PCBs

Process creation: To POSIX or not to POSIX?

- Create a new process by cloning an existing process
- Pause the current process and save its state

Duplicate its address space and its PCB

Add the new PCB to the in-kernel queue of PCBs

Use the return value to diverge

Requires distinguished init process...

- Create and initialize a new PCB
- Add a new PCB 1o the in-kernel queue of PCBs
- Does not require a distinguished process...but....

Process creation: Not to POSIX

DESCRIPTION

CreateProcessA: Creates a new process and its primary thread

BOOL CreateProcessA(
[in, optional]
[in, out, optional]
[in, optional]
[in, optional]
[in]
[in]
[in, optional]
[in, optional]
[in]
[out]

LPCSTR

LPSTR
LPSECURITY_ATTRIBUTES
LPSECURITY_ATTRIBUTES
BOOL

DWORD

LPVOID

LPCSTR

LPSTARTUPINFOA
LPPROCESS_INFORMATION

IpApplicationName,
IpCommandLine,
IpProcessAttributes,
lpThreadAttributes,
bInheritHandles,
dwCreationFlags,
I[pEnvironment,
|pCurrentDirectory,
|pStartupInfo,
IpProcessInformation

The elegant simplicity of POSIXI

DESCRIPTION

pid_t fork(void): Creates a new process by duplicating the
calling process

- Returns process ID of new process in the "parent” process
- Returns O in the "child” process

SYSCALL_DEFINEO(fork)
{

return kernel clone(&args);

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/source/kernel/fork.c#L2774

How to execute a program?

How to execute a program?

int execve (char *prog, char **argy, ...)

- prog: Full pathname of a program to run

- argv: Arguments that get passed to main

- envp: Environment variables, e.g., PATH, HOME
- Does not return on success

How to execute a program?

int execve (char *prog, char **argv, ...)
- prog: Full pathname of a program to run
- argv: Arguments that get passed to main
- envp: Environment variables, e.g., PATH, HOME
- Does not return on success

Time

P1: fork

P1: wait

_ /) P2:exit

P1: wait returns
status of P2 exit

How to execute a program?

‘ P1: fork

int execve (char *prog, char **argy, ...)

prog: Full pathname of a program to run

argv: Arguments that get passed to main
envp: Environment variables, e.g., PATH, HOME
Does not return on success

Tirl\e

-

"
o

N

P1: wait

N/

P2: exec

P2: exit

P1: wait returns
status of P2 exit

How to

Tirr_\e

| X P1: fork
mow
) -
_ /P2 exit

P1: wait returns
status of P2 exit

P1: wait

—

execute a program?

‘ P1: fork

Tim
T

"
e

N

P1: wait

P2: exec

N ! P2: exit

P1: wait returns
status of P2 exit

Process states

- A POSIX process has an execution state which indicates what
the process is currently "doing"

- Each process’ PCB is queued on the respective queue

Process states

- A POSIX process has an execution state which indicates what
the process is currently "doing"

- Each process’ PCB is queued on the respective queue

- As the process executes = It transitions from state to state

Process states

: The process is ready to be executed, but it's not executing yet
because another process is using the processor

Process states

: The process is ready to be executed, but it's not executing yet
because another process is using the processor

The process is waiting for an async event to
complete (e.g., a disk I/0), and cannot progress until the event completes

Process states

: The process is ready to be executed, but it's not executing yet
because another process is using the processor

The process is waiting for an async event to
complete (e.g., a disk I/0), and cannot progress until the event completes
P g prog P

- Running: The process is executing on the processor until either
- (i) An async event is required =the
- (ii) It exceeds its maximum quantum = a scheduler interrupt occurs

Process states

: The process is ready to be executed, but it's not executing yet
because another process is using the processor

The process is waiting for an async event to
complete (e.g., a disk I/0), and cannot progress until the event completes
P g prog P

- Running: The process is executing on the processor until either
- (i) An async event is required =the
- (ii) It exceeds its maximum quantum = a scheduler interrupt occurs

- Terminated: The process finished execution
- Normally: By calling exit after its parent has called wait
- As a"zombie:" The parent exists, but hasn't called wait() yet
- Orphan: The parent has exited already

Process states

Ready queue

Scheduler
dispatch

Admitted

Scheduler
interrupt

Process states

Ready queue

Scheduler
dispatch

Admitted

Scheduler
interrupt

Needs

Async event async event

completion

<— Keyboard events

I/0 .
queues <— Disk events

- <«— Network events

Process states

Ready queue

Scheduler
dispatch

Admitted Normal exit

Parent has invoked -

wait() and has not
terminated

Scheduler
interrupt

Needs

Async event async event

completion
<— Keyboard events
I/0 .
queues <— Disk events

- <«— Network events

Process states

Ready queue Parent process
has terminated process

Scheduler) re-parented
dispatch o “-., Joinit

‘ ~

‘ N
/ N
/ \

\

Admitted Normal exit

Parent has invoked
wait() and has not
terminated

Scheduler
interrupt

Needs

Async event async event

completion
<— Keyboard events
I/0]
queues <— Disk events

- <«— Network events

Process states

Ready queue Parent process
has terminated process

Scheduler) re-parented
dispatch o “-., Joinit

‘ ~

‘ N
/ N
/ \

\

Admitted Normal exit

Parent has invoked
wait() and has not
terminated

Scheduler
interrupt

Needs Parent process
Async event async event hasn't called wait()
completion yet
<— Keyboard events
I/0 .
queues <— Disk events

- <«— Network events

Process states

Ready queue Parent process
has terminated process

Scheduler) re-parented
dispatch o “-., Joinit

‘ N
‘ N

/ \

\

Admitted Normal exit

Parent has invoked
wait() and hos not 4
\ terminated /

N ’

Scheduler
interrupt

AN " parent calls
DR _---"" wait(), or process
gets re-parented to init
Needs Parent process
Async event async event hasn't called wait()
completion yet
<— Keyboard events
I/0 .
queues <— Disk events

- <«— Network events

Process dispatching

- Many processes in memory
- One allocated on the processor

Process dispatching

- Many processes in memory

Multiprogrammin
- One allocated on the processor } Prog 9

Process dispatching

- Many processes in memory
- One allocated on the processor
- Our goal: Give each process the illusion it has the full processor

} Multiprogramming

Process dispatching

Many processes in memory
One allocated on the processor
Our goal: Give each process the illusion it has the full processor

In other words: Run multiple processes simultaneously

} Multiprogramming

Process dispatching

Many processes in memory
One allocated on the processor
Our goal: Give each process the illusion it has the full processor

In other words: Run multiple processes simultaneously

Timesharing dispatching loop: Preemption — periodic timer interrupt

} Multiprogramming

do {
Get a process P from ready queue
Execute Puntil fime Q expires
Put P back in ready queue

} while(1)

Process dispatching

Dispatch P,

Ready queue /\

Processor

Time

s

- Select P,
- Load PCB of P, and start execution

Process dispatching

Time
Dispatch P, T

- Select P,
Ready queue - Load PCB of P, and start execution
Processor .
_ - Interrupt P, after Q amount of execution time

Scheduler
interrupt

Process dispatching

Time
Dispatch P, T

- Select P,
Ready queue - Load PCB of P, and start execution

Processor

- Interrupt P, after Q amount of execution time
Scheduler

interrupt

- Save processor state on PCB of P,

- Add PCB of P, in ready queue

Ctx switch

Process dispatching

Dispatch P,

Ready queue /\

Scheduler
interrupt

Ready queue /\

Processor

Processor

Time

s

- Select P,
- Load PCB of P, and start execution

- Interrupt P, after Q amount of execution time
- Save processor state on PCB of P,
- Add PCB of P, in ready queue

- Select 7’6

Ctx switch
?2—> 7’6

- Load PCB of P, and start execution

Process dispatching

Dispatch P,

Ready queue /\

Scheduler
interrupt
Dispatch P,
Ready queue /—\‘
Processor

Scheduler
intferrupt

Time
7

- Select P,
- Load PCB of P, and start execution

- Interrupt P, after Q amount of execution time
- Save processor state on PCB of P,
- Add PCB of P, in ready queue

- Select 7’6

Ctx switch
?2—> 7’6

- Load PCB of P, and start execution

- Interrupt P, after Q amount of execution time

Process dispatching

Dispatch P,

Ready queue /\

Scheduler
interrupt
Dispatch P,
Ready queue /—\‘
Processor

Scheduler
intferrupt

Time
7

- Select P,
- Load PCB of P, and start execution

- Interrupt P, after Q amount of execution time
- Save processor state on PCB of P,
- Add PCB of P, in ready queue

- Select 7’6

Ctx switch
?2—> 7’6

- Load PCB of P, and start execution

- Interrupt P, after Q amount of execution time

