
 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis
Lecture 05

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Administrivia
- Where we are today? 52 teams…

- Drop those kernels boi
- Team Rocket
- Οι ωραίοι έχουν χρέη!
- Skordopsomo
- Syscall Syndicate
- Printer Hate Club
- Συστουργικα Λειτηματα
- Panic! In the Kernel
- GadaffiOS
- We dont byte
- Onlyfun
- Too Legit to Buffer (TLB)
- The Deadlocks
- Tow and a half man

 ...

FINAL DISCLAIMER

- Without a team for the programming assignments at this
point, the only option is September

- Final exam: 100% credit
- Other requirements? None

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

Overview
- Processes

- Q1: What is a process?
- Q2: Why use a process?
- Q3: What are the components of a process?
- Q4: How do we create a process?
- Q5: How do we run a program?
- Q6: What are the possible states a process could be in?
- Q7: How does the OS run multiple processes simultaneously?

 …

The process abstraction
- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

Space for
heap growth, and mmap'ing

start_data

start_brk

brk

 sp

start_code

end_data

Higher mem
addresses

OS kernel

Stack

Heap

instruction
instruction

%eip

Uninitialized data (.data, .bss)

Initialized data (.rodata)

Space for stack growth

mmap_base
mmap

High 1GB

.text

RLIMIT_STACK
default: 8MB

start_stack

…
Executable
instructions

OS view (the reality)

Virtual Address Space (VAS)

… Metadata the OS keeps
for each running program

Stack

Heap

.text segment (code)

 .data, .bss

.rodata

Free memory

Process's view

Static
segments

Dynamic
segments

Higher
addr.

The process abstraction
- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

- Popularized in 1974, in the context of the Bell Labs paper called "The
UNIX Time-Sharing System."

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://dl.acm.org/doi/10.1145/361011.361061
https://dl.acm.org/doi/10.1145/361011.361061

The process abstraction
- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

- Popularized in 1974, in the context of the Bell Labs paper called "The
UNIX Time-Sharing System."

- In simple words: A process is an instance of a program in execution
- A program is a recipe ⇒ A process is the mess in your kitchen

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://dl.acm.org/doi/10.1145/361011.361061
https://dl.acm.org/doi/10.1145/361011.361061

The process abstraction
- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

- Popularized in 1974, in the context of the Bell Labs paper called "The
UNIX Time-Sharing System."

- In simple words: A process is an instance of a program in execution
- A program is a recipe ⇒ A process is the mess in your kitchen

- How we use it?
- Want to run a program? Use a process
- Want to run multiple programs? Use multiple processes

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://dl.acm.org/doi/10.1145/361011.361061
https://dl.acm.org/doi/10.1145/361011.361061

The process abstraction
- Why we love it?

The process abstraction
- Why we love it? The definite illusion: User programs can be

written as if they will get isolated access to all system resources

The process abstraction
- Why we love it? The definite illusion: User programs can be

written as if they will get isolated access to all system resources
- Noone else will exist in memory

- Remember printf("%x | %d\n", &x, x) from quiz01?
- Two processes may see a different value at the same virt. address

The process abstraction
- Why we love it? The definite illusion: User programs can be

written as if they will get isolated access to all system resources
- Noone else will exist in memory

- Remember printf("%x | %d\n", &x, x) from quiz01?
- Two processes may see a different value at the same virt. address

- Noone else will be using the processor
- Remember preemption and this timer ticking?
- Every process has its own "virtual" processor time

The process abstraction
- Why we love it? The definite illusion: User programs can be

written as if they will get isolated access to all system resources
- Noone else will exist in memory

- Remember printf("%x | %d\n", &x, x) from quiz01?
- Two processes may see a different value at the same virt. address

- Noone else will be using the processor
- Remember preemption and this timer ticking?
- Every process has its own "virtual" processor time

- Noone else will be using using the storage
- This is for later, but the ideas are similar…
- Every process may read from a file as if no other is writing to it

Components of a process
- Process Control Block (PCB): A struct used by the OS to

 keep track of each running process (see task_struct)

,,,OS kernel
… PCBs

...

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791

Components of a process
- Process Control Block (PCB): A struct used by the OS to

 keep track of each running process (see task_struct)
- Virtual Address Space (see struct_mm): A linear array of bytes with all

static and dynamic segments in virtual memory of a running process

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
https://elixir.bootlin.com/linux/v6.14/source/include/linux/mm_types.h#L805

Components of a process
- Process Control Block (PCB): A struct used by the OS to

 keep track of each running process (see task_struct)
- Virtual Address Space (see struct_mm): A linear array of bytes with all

static and dynamic segments in virtual memory of a running process
- Execution state (see thread_struct): An instruction pointer, a stack

pointer, and a set of general-purpose registers with their values

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
https://elixir.bootlin.com/linux/v6.14/source/include/linux/mm_types.h#L805
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/include/asm/processor.h#L457

Components of a process
- Process Control Block (PCB): A struct used by the OS to

 keep track of each running process (see task_struct)
- Virtual Address Space (see struct_mm): A linear array of bytes with all

static and dynamic segments in virtual memory of a running process
- Execution state (see thread_struct): An instruction pointer, a stack

pointer, and a set of general-purpose registers with their values
- Control metadata: Scheduling (see sched_entity and sched_statistics),

identity (see struct_cred), and more...

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
https://elixir.bootlin.com/linux/v6.14/source/include/linux/mm_types.h#L805
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/include/asm/processor.h#L457
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L547
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L505
https://elixir.bootlin.com/linux/v6.14/source/include/linux/cred.h#L111

Components of a process
- Process Control Block (PCB): A struct used by the OS to

 keep track of each running process (see task_struct)
- Virtual Address Space (see struct_mm): A linear array of bytes with all

static and dynamic segments in virtual memory of a running process
- Execution state (see thread_struct): An instruction pointer, a stack

pointer, and a set of general-purpose registers with their values
- Control metadata: Scheduling (see sched_entity and sched_statistics),

identity (see struct_cred), and more...
- Shared system resources: Open files (see files_struct) and open network

connections (see struct_sock), and more...

https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L791
https://elixir.bootlin.com/linux/v6.14/source/include/linux/mm_types.h#L805
https://elixir.bootlin.com/linux/v6.14/source/arch/x86/include/asm/processor.h#L457
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L547
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L505
https://elixir.bootlin.com/linux/v6.14/source/include/linux/cred.h#L111
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched.h#L1161
https://elixir.bootlin.com/linux/v6.14/source/include/linux/net.h#L117

Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

- Pause the current process and save its state
- Duplicate its address space and its PCB

Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

- Pause the current process and save its state
- Duplicate its address space and its PCB
- Add the new PCB to the in-kernel queue of PCBs
- Use the return value to diverge

Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

- Pause the current process and save its state
- Duplicate its address space and its PCB
- Add the new PCB to the in-kernel queue of PCBs
- Use the return value to diverge
- Requires distinguished init process...

Process creation: To POSIX

DESCRIPTION

pid_t fork(void): Creates a new process by duplicating the calling process
- Returns process ID (PID) of the new process in the "parent” process
- Returns 0 in the “child” process

SYSCALL_DEFINE0(fork)
{

…
return kernel_clone(&args);

}

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/source/kernel/fork.c#L2774

Process creation: To POSIX
int fork ()
- Creates a new process by duplicating the calling process
- Returns: Pid of the new process in "parent” process
- Returns: 0 in the “child” process

Time
P1 P1: fork

P1 P2

Process creation: To POSIX
int fork ()
- Creates a new process by duplicating the calling process
- Returns: Pid of the new process in "parent” process
- Returns: 0 in the “child” process

int waitpid (int pid, int *stat, ...) ⇐ Parent calls this
- pid: process to wait for, or -1 for all
- stat: will contain exit value, or signal
- Returns process ID, or -1 on error

Time
P1 P1: fork

P1 P2

P1: wait

Process creation: To POSIX
int fork ()
- Creates a new process by duplicating the calling process
- Returns: Pid of the new process in "parent” process
- Returns: 0 in the “child” process

int waitpid (int pid, int *stat, ...) ⇐ Parent calls this
- pid: process to wait for, or -1 for all
- stat: will contain exit value, or signal
- Returns process ID, or -1 on error

void exit (int status)
- status: shows up in waitpid (shifted)
- Current process ceases to exist
- Convention: pass 0 on success, non-zero on error

Time
P1 P1: fork

P1 P2

P1 P2

P2: exit

P1: wait

Process creation: To POSIX
int fork ()
- Creates a new process by duplicating the calling process
- Returns: Pid of the new process in "parent” process
- Returns: 0 in the “child” process

int waitpid (int pid, int *stat, ...) ⇐ Parent calls this
- pid: process to wait for, or -1 for all
- stat: will contain exit value, or signal
- Returns process ID, or -1 on error

void exit (int status)
- status: shows up in waitpid (shifted)
- Current process ceases to exist
- Convention: pass 0 on success, non-zero on error

Time
P1 P1: fork

P1 P2

P1 P2

P2: exit

P1: wait

P1 P1: wait returns
status of P2 exit

Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

- Pause the current process and save its state
- Duplicate its address space and its PCB
- Add the new PCB to the in-kernel queue of PCBs
- Use the return value to diverge
- Requires distinguished init process...

- Creating a new process from scratch

Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

- Pause the current process and save its state
- Duplicate its address space and its PCB
- Add the new PCB to the in-kernel queue of PCBs
- Use the return value to diverge
- Requires distinguished init process...

- Creating a new process from scratch
- Create and initialize a new PCB

Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

- Pause the current process and save its state
- Duplicate its address space and its PCB
- Add the new PCB to the in-kernel queue of PCBs
- Use the return value to diverge
- Requires distinguished init process...

- Creating a new process from scratch
- Create and initialize a new PCB
- Add a new PCB to the in-kernel queue of PCBs

Process creation: To POSIX or not to POSIX?
- Create a new process by cloning an existing process

- Pause the current process and save its state
- Duplicate its address space and its PCB
- Add the new PCB to the in-kernel queue of PCBs
- Use the return value to diverge
- Requires distinguished init process...

- Creating a new process from scratch
- Create and initialize a new PCB
- Add a new PCB to the in-kernel queue of PCBs
- Does not require a distinguished process...but….

Process creation: Not to POSIX

DESCRIPTION

CreateProcessA: Creates a new process and its primary thread

 BOOL CreateProcessA(
 [in, optional] LPCSTR lpApplicationName,
 [in, out, optional] LPSTR lpCommandLine,
 [in, optional] LPSECURITY_ATTRIBUTES lpProcessAttributes,
 [in, optional] LPSECURITY_ATTRIBUTES lpThreadAttributes,
 [in] BOOL bInheritHandles,
 [in] DWORD dwCreationFlags,
 [in, optional] LPVOID lpEnvironment,
 [in, optional] LPCSTR lpCurrentDirectory,
 [in] LPSTARTUPINFOA lpStartupInfo,
 [out] LPPROCESS_INFORMATION lpProcessInformation

);

The elegant simplicity of POSIX!
DESCRIPTION

pid_t fork(void): Creates a new process by duplicating the
 calling process

- Returns process ID of new process in the "parent” process
- Returns 0 in the “child” process

SYSCALL_DEFINE0(fork)
{

…
return kernel_clone(&args);

}

https://elixir.bootlin.com/linux/v6.14/C/ident/SYSCALL_DEFINE1
https://elixir.bootlin.com/linux/v6.14/C/ident/exit
https://elixir.bootlin.com/linux/v6.14/source/kernel/fork.c#L2774

How to execute a program?

How to execute a program?

int execve (char *prog, char **argv, ...)
- prog: Full pathname of a program to run
- argv: Arguments that get passed to main
- envp: Environment variables, e.g., PATH, HOME
- Does not return on success

How to execute a program?

int execve (char *prog, char **argv, ...)
- prog: Full pathname of a program to run
- argv: Arguments that get passed to main
- envp: Environment variables, e.g., PATH, HOME
- Does not return on success

Time
P1 P1: fork

P1 P2

P1 P2

P2: exit

P1: wait

P1 P1: wait returns
status of P2 exit

How to execute a program?

Time

P1 P1: fork

P1 P2

P1 P2

P2: exec

P2: exit

P1: wait

P1 P1: wait returns
status of P2 exit

int execve (char *prog, char **argv, ...)
- prog: Full pathname of a program to run
- argv: Arguments that get passed to main
- envp: Environment variables, e.g., PATH, HOME
- Does not return on success

How to execute a program?

Time

P1 P1: fork

P1 P2

P1 P2

P2: exec

P2: exit

P1: wait

P1 P1: wait returns
status of P2 exit

Time
P1 P1: fork

P1 P2

P1 P2

P2: exit

P1: wait

P1 P1: wait returns
status of P2 exit

⇒

Process states

- A POSIX process has an execution state which indicates what
the process is currently "doing"

- Each process' PCB is queued on the respective queue

Process states

- A POSIX process has an execution state which indicates what
the process is currently "doing"

- Each process' PCB is queued on the respective queue

- As the process executes ⇒ It transitions from state to state

Process states
- Ready: The process is ready to be executed, but it's not executing yet
because another process is using the processor

Process states
- Ready: The process is ready to be executed, but it's not executing yet
because another process is using the processor
- Waiting (blocked): The process is waiting for an async event to
complete (e.g., a disk I/O), and cannot progress until the event completes

Process states
- Ready: The process is ready to be executed, but it's not executing yet
because another process is using the processor
- Waiting (blocked): The process is waiting for an async event to
complete (e.g., a disk I/O), and cannot progress until the event completes
- Running: The process is executing on the processor until either

- (i) An async event is required ⇒the process transitions to the "waiting" queue
- (ii) It exceeds its maximum quantum ⇒ a scheduler interrupt occurs

Process states
- Ready: The process is ready to be executed, but it's not executing yet
because another process is using the processor
- Waiting (blocked): The process is waiting for an async event to
complete (e.g., a disk I/O), and cannot progress until the event completes
- Running: The process is executing on the processor until either

- (i) An async event is required ⇒the process transitions to the "waiting" queue
- (ii) It exceeds its maximum quantum ⇒ a scheduler interrupt occurs

- Terminated: The process finished execution
- Normally: By calling exit after its parent has called wait
- As a "zombie:" The parent exists, but hasn't called wait() yet
- Orphan: The parent has exited already

Process states

New Ready Running

Scheduler
dispatch

Scheduler
interrupt

Admitted

Ready queue

Process states

New Ready Running

Waiting

Scheduler
dispatch

Scheduler
interrupt

Async event
completion

Admitted

Ready queue

I/O
 queues

…

Keyboard events

Disk events

Network events

Needs
async event

Process states

New Ready Running

Waiting

Terminated

Scheduler
dispatch

Scheduler
interrupt

Needs
async event Async event

completion

Admitted

Ready queue

I/O
 queues

…

Keyboard events

Disk events

Network events

Normal exit

Parent has invoked
wait() and has not

terminated

Process states

New Ready Running

Waiting

Terminated

Scheduler
dispatch

Scheduler
interrupt

Needs
async event Async event

completion

Admitted

Ready queue

I/O
 queues

…

Keyboard events

Disk events

Network events

Orphan

Parent process
 has terminated process

re-parented
to init

Normal exit

Parent has invoked
wait() and has not

terminated

Process states

New Ready Running

Waiting

Terminated

Scheduler
dispatch

Scheduler
interrupt

Needs
async event Async event

completion

Admitted

Ready queue

I/O
 queues

…

Keyboard events

Disk events

Network events

Orphan

Zombie

Parent process
hasn't called wait()

yet

Parent process
 has terminated process

re-parented
to init

Normal exit

Parent has invoked
wait() and has not

terminated

Process states

New Ready Running

Waiting

Terminated

Scheduler
dispatch

Scheduler
interrupt

Needs
async event Async event

completion

Admitted

Ready queue

I/O
 queues

…

Keyboard events

Disk events

Network events

Orphan

Zombie

Parent process
hasn't called wait()

yet

Parent process
 has terminated process

re-parented
to init

Normal exit

Parent has invoked
wait() and hos not

terminated
parent calls

wait(), or process
gets re-parented to init

Process dispatching

- Many processes in memory
- One allocated on the processor

Process dispatching

- Many processes in memory
- One allocated on the processor

Multiprogramming

Process dispatching

- Many processes in memory
- One allocated on the processor
- Our goal: Give each process the illusion it has the full processor

Multiprogramming

Process dispatching

- Many processes in memory
- One allocated on the processor
- Our goal: Give each process the illusion it has the full processor
- In other words: Run multiple processes simultaneously

Multiprogramming

Process dispatching

- Many processes in memory
- One allocated on the processor
- Our goal: Give each process the illusion it has the full processor
- In other words: Run multiple processes simultaneously
- Timesharing dispatching loop: Preemption — periodic timer interrupt

do {
Get a process P from ready queue

Execute P until time Q expires
Put P back in ready queue

} while(1)

Multiprogramming

Process dispatching

Dispatch P2

Ready queue
ProcessorP1 P2P5P4P6 P3

- Select P2

 - Load PCB of P2 and start execution

Time

Process dispatching

Dispatch P2

Scheduler
interrupt

Ready queue
ProcessorP1 P2P5P4P6 P3

- Select P2

 - Load PCB of P2 and start execution

Time

- Interrupt P2 after Q amount of execution time

Process dispatching

Dispatch P2

Ready queue
ProcessorP1 P2P5P4P6 P3

- Add PCB of P2 in ready queue

- Save processor state on PCB of P2

- Select P2

 - Load PCB of P2 and start execution

 - Interrupt P2 after Q amount of execution time

Ctx switch

Time

Scheduler
interrupt

Process dispatching

Dispatch P2

Ready queue
ProcessorP1 P2P5P4P6 P3

Dispatch P6

Ready queue

P1
P6P5P4P2

P3

- Add PCB of P2 in ready queue

- Save processor state on PCB of P2

- Select P2

 - Load PCB of P2 and start execution

 - Interrupt P2 after Q amount of execution time

Ctx switch
P2→ P6- Select P6

 - Load PCB of P6 and start execution

Time

Processor

Scheduler
interrupt

Process dispatching

Dispatch P2

Ready queue
ProcessorP1 P2P5P4P6 P3

Dispatch P6

Ready queue

P1
P6P5P4P2

P3

- Add PCB of P2 in ready queue

- Save processor state on PCB of P2

- Select P2

 - Load PCB of P2 and start execution

 - Interrupt P2 after Q amount of execution time

Ctx switch
P2→ P6

- Select P6

 - Load PCB of P6 and start execution

 - Interrupt P6 after Q amount of execution time

Time

Processor

Scheduler
interrupt

Scheduler
interrupt

Process dispatching

Dispatch P2

Ready queue
ProcessorP1 P2P5P4P6 P3

Dispatch P6

Scheduler
interrupt

Ready queue

P1
P6P5P4P2

P3

- Add PCB of P2 in ready queue

- Save processor state on PCB of P2

- Select P2

 - Load PCB of P2 and start execution

 - Interrupt P2 after Q amount of execution time

Ctx switch
P2→ P6- Select P6

 - Load PCB of P6 and start execution

 - Interrupt P6 after Q amount of execution time

Time

Processor

...

...

Scheduler
interrupt

