
 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis
Lecture 06

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Quiz-02

Grade

Pe
rc

en
ta

ge
 o

f
pp

l.
 b

el
ow

 g
ra

de

Quiz-02: You need to do something NOW.

Grade

Pe
rc

en
ta

ge
 o

f
pp

l.
 b

el
ow

 g
ra

de 85%
below 45%

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms

The miserable cost of fork()...

void process_task(int num){
 is_prime(num);
 _exit(0);
}

int main(int argc, char **argv) {
 …
 for (int i = 0; i < num_tasks; i++)
 numbers[i] = rand() % 10000000;
 …
 for (int i = 0; i < num_tasks; i++) {
 pid_t pid = fork();
 if (pid == 0)
 process_task(numbers[i]);
 }

 for (int i = 0; i < num_tasks; i++)
 wait(NULL);
}

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms

Overview
- Inter-Process Communication (IPC)

- Q1: How do processes communicate with each other?
- Q2: Asynchronous IPC mechanisms?
- Q3: Synchronous IPC mechanisms?

 …

Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process to communicate with another?

Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process to communicate with another?

*) Why need communication b/w processes? ⇒ Cooperation!

Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process to communicate with another?

*) Why need communication b/w processes? ⇒ Cooperation!

> The OS primitive for communication between processes is
called Inter-Process Communication (IPC)

Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process to communicate with another?

*) Why need communication b/w processes? ⇒ Cooperation!

> The OS primitive for communication between processes is
called Inter-Process Communication (IPC)

> Two core paradigms for IPC
- Synchronous: The recipient can be assumed "prepared"
- Asynchronous: The recipient cannot be assumed "prepared"

Asynchronous and synchronous IPC

> Asynchronous IPC: The recipient process is not necessarily
waiting for a "message" to be delivered to it
- Example: POSIX signals

Asynchronous and synchronous IPC

> Asynchronous IPC: The recipient process is not necessarily
waiting for a "message" to be delivered to it
- Example: POSIX signals

> Synchronous IPC: The recipient process is waiting for a
message to be delivered to it
- Example: POSIX pipes, POSIX shared memory

Asynchronous IPC: Signals

> POSIX signals is the most common async IPC mechanism
- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to

deliver a signal from one process to another

Asynchronous IPC: Signals

> POSIX signals is the most common async IPC mechanism
- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to

deliver a signal from one process to another
- A "signal" is a short message, identified by a small integer

Asynchronous IPC: Signals

> POSIX signals is the most common async IPC mechanism
- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to

deliver a signal from one process to another
- A "signal" is a short message, identified by a small integer
- There are 32 predefined POSIX signals

- SIGINT(2): Terminal interrupt signal
- SIGSEGV(11): Invalid memory reference

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

Asynchronous IPC: Signals

> POSIX signals is the most common async IPC mechanism
- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to

deliver a signal from one process to another
- A "signal" is a short message, identified by a small integer
- There are 32 predefined POSIX signals

- SIGINT(2): Terminal interrupt signal
- SIGSEGV(11): Invalid memory reference

- int sigaction(int signum, … sigaction *act, … sigaction *oldact)
- Used by a process to define an signal "handler": Action to take upon

delivery of a signal to it

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

Asynchronous IPC: Signals

> POSIX signals is the most common async IPC mechanism
- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to

deliver a signal from one process to another
- A "signal" is a short message, identified by a small integer
- There are 32 predefined POSIX signals

- SIGINT(2): Terminal interrupt signal
- SIGSEGV(11): Invalid memory reference

- int sigaction(int signum, … sigaction *act, … sigaction *oldact)
- Used by a process to define an signal "handler": Action to take upon

delivery of a signal to it
- Signals that cannot be "handled": SIGKILL(9), SIGSTOP(19) [see this]

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L3335

Asynchronous IPC: Signals

> 3.336 Signal (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,

an event occurring in the system
- Examples include hardware exceptions and specific actions by processes
- The term signal is also used to refer to the event itself

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336

Asynchronous IPC: Signals

> 3.336 Signal (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,

an event occurring in the system
- Examples include hardware exceptions and specific actions by processes
- The term signal is also used to refer to the event itself

3.337 Signal Stack (POSIX spec)
- Memory established for a thread, in which signal handlers catching signals sent

to that thread are executed

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337

Asynchronous IPC: Signals

> 3.336 Signal (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,

an event occurring in the system
- Examples include hardware exceptions and specific actions by processes
- The term signal is also used to refer to the event itself

3.337 Signal Stack (POSIX spec)
- Memory established for a thread, in which signal handlers catching signals sent

to that thread are executed

3.13 Alternate Signal Stack (POSIX spec)
- Memory associated with a thread, established upon request by the

implementation for a thread, separate from the thread signal stack, in which
signal handlers responding to signals sent to that thread may be executed

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_13

Asynchronous IPC: Signals

> 3.336 Signal (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,

an event occurring in the system
- Examples include hardware exceptions and specific actions by processes
- The term signal is also used to refer to the event itself

3.337 Signal Stack (POSIX spec)
- Memory established for a thread, in which signal handlers catching signals sent

to that thread are executed

3.13 Alternate Signal Stack (POSIX spec) – Why do we need this?
- Memory associated with a thread, established upon request by the

implementation for a thread, separate from the thread signal stack, in which
signal handlers responding to signals sent to that thread may be executed

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_13

Asynchronous IPC: Signals

> 3.336 Signal (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,

an event occurring in the system
- Examples include hardware exceptions and specific actions by processes
- The term signal is also used to refer to the event itself

3.337 Signal Stack (POSIX spec)
- Memory established for a thread, in which signal handlers catching signals sent

to that thread are executed

3.13 Alternate Signal Stack (POSIX spec)
- Memory associated with a thread, established upon request by the

implementation for a thread, separate from the thread signal stack, in which
signal handlers responding to signals sent to that thread may be executed

> See int sigaltstack(stack_t *ss, stack_t *oss)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_13

Asynchronous IPC: Signals

> 2.4.1 Signal Generation and Delivery (POSIX spec)
- At the time of generation, a determination shall be made whether the signal

has been generated for a process or for a specific thread within a process

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> 2.4.1 Signal Generation and Delivery (POSIX spec)
- At the time of generation, a determination shall be made whether the signal

has been generated for a process or for a specific thread within a process
- Signals which are generated by some action attributable to a particular thread

(such as a hardware fault) shall be delivered to the thread that caused the
signal to be generated

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> 2.4.1 Signal Generation and Delivery (POSIX spec)
- At the time of generation, a determination shall be made whether the signal

has been generated for a process or for a specific thread within a process
- Signals which are generated by some action attributable to a particular thread

(such as a hardware fault) shall be delivered to the thread that caused the
signal to be generated

- Signals that are generated in association with a process ID or a process group
ID or an asynchronous event (such as terminal activity) shall be delivered to
that process or process group

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> 2.4.1 Signal Generation and Delivery (POSIX spec)
- During the time between the generation of a signal and its delivery or

acceptance, the signal is said to be pending, and a signal can be blocked from
delivery to a thread

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> 2.4.1 Signal Generation and Delivery (POSIX spec)
- During the time between the generation of a signal and its delivery or

acceptance, the signal is said to be pending, and a signal can be blocked from
delivery to a thread

- Signals generated for a process, shall be delivered to exactly one of the threads
within the process which is in a call to sigwait() function selecting that signal, or
has not blocked the delivery of the signal

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> 2.4.1 Signal Generation and Delivery (POSIX spec)
- During the time between the generation of a signal and its delivery or

acceptance, the signal is said to be pending, and a signal can be blocked from
delivery to a thread

- Signals generated for a process, shall be delivered to exactly one of the threads
within the process which is in a call to sigwait() function selecting that signal, or
has not blocked the delivery of the signal

- If the action associated with a blocked signal is anything other than to ignore
the signal, and if that signal is generated for the thread, the signal shall remain
pending until it is either (i) unblocked, or (ii) selected and returned by a call to
sigwait() function, or (iii) the action associated with it is set to ignore the signal

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

Process A
 asks the OS

to deliver
signal to
process B

OS
kernel

Stack

Heap

instruction
instruction

Uninitialized data

Initialized data

.text

…

…

Process A (VAS) Process B (VAS)

OS
kernel

instruction
instruction

.text

…

…

…

Stack (process A)

Stack (process B)

0PCBb
…

PCBs

…

0PCBa

Pending
signals

The OS add
the signal to
the pending
signals of
process B

The OS
selects process

B to be
scheduled in

The OS has
changed the

top of process'
B stack

and its ip

%ip' (before
 sig.)

instruction
instruction

%ip (start
of signal
handler)

Return address: %ip'
Saved registers

…

#signo: argument for
function at %ip

1

Physical memory segments

2 3

4Heap

Asynchronous IPC: Signals

> Sending a signal (Linux)
→ kill()
 → prepare_kill_siginfo()
 → kill_something_info()
 → kill_proc_info()
 → kill_pid_info()
 → kill_pid_info_type()
 → group_send_sig_info()
 → do_send_sig_info()
 → send_signal_locked()
 → __send_signal_locked()

> Handling a signal (Linux x86)
→ exit_to_user_mode_loop()
 → arch_do_signal_or_restart()
 → handle_signal()
 → setup_rt_frame()
 → x64_setup_rt_frame()

https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L3949
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L3933
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1572
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1476
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1471
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1449
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1409
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1262
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1183
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1042
https://elixir.bootlin.com/linux/v6.16/source/kernel/entry/common.c#L90
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L333
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L255
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L236
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal_64.c#L164

From an address translation error to a SIGSEGV
 > do_translation_fault()
 | do_page_fault()
 | ...
 | arm64_force_sig_fault(SIGSEGV, ...)
 0.500 us | ...
 | force_sig_fault()
 | force_sig_info_to_task()
 | send_signal_locked()
 | __send_signal_locked()
 0.666 us | prepare_signal();
 | ...
 | complete_signal()
 | signal_wake_up()
 | signal_wake_up_state()
 0.250 us | wake_up_state()

 try_to_wake_up_state
 ...
 0.333 us | kick_process()
 1.875 us | ...

int main(void) {
 char *p = 0x123;
 *p = 0;
 }

This is only a small subset
of all things the OS does when
your program causes a SIGSEGV

How to enable kernel tracing

$ cd /sys/kernel/debug/tracing
$ echo function_graph > current_tracer
$ echo 114194 > set_ftrace_pid
$ echo 1 > tracing_on
$ cat trace > /tmp/kernel_trace.log
$ echo 0 > tracing_on

https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L546
https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L766
https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L766
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1701
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1293
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1182
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1041
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L870
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L962
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched/signal.h#L438
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L720
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L4467
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L4467
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L3468
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a

synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a

synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Operations on pipes: read/ write/ close (similar to files, later...)
- Read on fds[0] will block until data is written to fds[1]
- On success, the number of bytes read is returned

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a

synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Operations on pipes: read/ write/ close (similar to files, later...)
- Read on fds[0] will block until data is written to fds[1]
- On success, the number of bytes read is returned
- A SIGPIPE will be delivered to a process trying to write on a pipe whose

read end is closed

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a

synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Limitation of unnamed pipes
- The channel is unidirectional
- The channel can only be established b/w descendant processes

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a

synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Limitation of unnamed pipes
- The channel is unidirectional
- The channel can only be established b/w descendant processes

> Bidirectional channels? See int socket(int domain, int type, int protocol)
> System-wide visible pipes? See int mkfifo(char *pathname, mode_t mode)

Synchronous IPC: Pipes (unnamed)

OS
kernel

Stack

Heap

instruction
instruction

Uninitialized data

Initialized data

.text

…

…

Process A (VAS) Physical memory segments

…

Heap (process A)

DATAa

DATAa

Heap (process B)

DATAa

DATAa …

Kernel buffer

OS
kernel

Stack

Heap

instruction
instruction

Uninitialized data

Initialized data

.text

…

…

Process B (VAS)

…

…

Process A
 asks the OS
to write data
to the pipe

1
Process B

 asks the OS to
wait until data is
available for read

in the pipe

2

DATAa

copy-in

copy-out

Synchronous IPC: Pipes (unnamed)

Synchronous IPC: Pipes (unnamed)

Synchronous IPC: Shared memory
> Pipe-based IPC (the tradeoff: what you get / what you lose…)

- Little responsibility ⇒ Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

Synchronous IPC: Shared memory
> Pipe-based IPC (the tradeoff: what you get / what you lose…)

- Little responsibility ⇒ Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to
a memory region that is shared among processes (shared memory)

Synchronous IPC: Shared memory
> Pipe-based IPC (the tradeoff: what you get / what you lose…)

- Little responsibility ⇒ Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to
a memory region that is shared among processes (shared memory)

- int shmget(key_t key, size_t size, ...)
- Creates a shared memory (shm) segment of "size", associated with "key"
- Returns the shm identifier

Synchronous IPC: Shared memory
> Pipe-based IPC (the tradeoff: what you get / what you lose…)

- Little responsibility ⇒ Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to
a memory region that is shared among processes (shared memory)

- int shmget(key_t key, size_t size, ...)
- Creates a shared memory (shm) segment of "size", associated with "key"
- Returns the shm identifier

- int shmat(int shmid, const void *shmaddr, ...)
- Attaches the shm segment identified by shmid to the VAS of the calling process
- If shmaddr is NULL, the OS chooses an unused virt. address to attach the segment

Synchronous IPC: Shared memory
> Pipe-based IPC (the tradeoff: what you get / what you lose…)

- Little responsibility ⇒ Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to
a memory region that is shared among processes (shared memory)

> Zero unnecessary copies
- New powers ⇒ New responsibilities
- Synchronization ⇒ More on this drama later

OS
kernel

Stack

Heap

instruction
instruction

Uninitialized data

Initialized data

.text

…

shared memory

…

Process A (VAS) Physical memory segments

OS
kernel

…

…

…

…

OS
kernel

Stack

Heap

instruction
instruction

Uninitialized data

Initialized data

.text

…

shared memory

…

Process B (VAS)

shared memory

Heap (process A)

Heap (process B)

Stack (process B)

Stack (process A)
Process A

 asks the OS to
create a shared
memory segment

1

Process A
 asks the OS to

attach
the shared memory

segment to its
addr. space

2 Process B
 asks the OS to

attach
the shared memory

segment to its
addr. space

3

Synchronous IPC: Shared memory

Synchronous IPC: Shared memory vs Pipes

Synchronous IPC: Shared memory vs Pipes

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms

Time

P1 P2 P4P3

Ready
 queue

Processor P1 P2 P4P3 Processor P1 P2 P4P3 Processor ProcessorProcessorP1 P2 P4P3 Processor Processor

No concurency Concurency

Concurency and parallelismParallelism w/o concurency

Time

Time

Time

A primer on concurrency

Process dispatching

Dispatch P2

Ready queue
ProcessorP1 P2P5P4P6 P3

Dispatch P6

Scheduler
interrupt

Ready queue

P1
P6P5P4P2

P3

- Add PCB of P2 in ready queue

- Save processor state on PCB of P2

- Select P2

 - Load PCB of P2 and start execution

 - Interrupt P2 after Q amount of execution time

Ctx switch
P2→ P6- Select P6

 - Load PCB of P6 and start execution

 - Interrupt P6 after Q amount of execution time

Time

Processor

...

...

Scheduler
interrupt

void process_task(int num){
 is_prime(num);
 _exit(0);
}

int main(int argc, char **argv) {
 …
 for (int i = 0; i < num_tasks; i++)
 numbers[i] = rand() % 10000000;
 …
 for (int i = 0; i < num_tasks; i++) {
 pid_t pid = fork();
 if (pid == 0)
 process_task(numbers[i]);
 }

 for (int i = 0; i < num_tasks; i++)
 wait(NULL);
}

Threads vs. Processes

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> All threads of a process share
- The code, data, and heap segments
- Shared system resources allocated to their process

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> All threads of a process share
- The code, data, and heap segments
- Shared system resources allocated to their process

> Each thread has its own
- Status (e.g., ready, running, or waiting)
- Execution state (i.e., processor registers)
- Thread-specific portion of the stack

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

Multithreaded process VAS

Higher mem
addresses

Heap

.text segment (code)

 .data, .bss

.rodata

%ip (thread-1)

Stack
%sp (thread-2)

%ip (thread-2)

brk (end of heap)

Free memory

Stack

 %fp (thread-2)

%sp (thread-1)
 %fp (thread-1)

start_data

end_data

start_brk

Free memory

Multithreaded process VAS
 --- before threads creation ----
aaaab0510000-aaaab0512000 r-xp … thread_vmas
aaaab0521000-aaaab0522000 r--p … thread_vmas
aaaab0522000-aaaab0523000 rw-p … thread_vmas
aaaad9392000-aaaad93b3000 rw-p … [heap]
ffff8d080000-ffff8d208000 r-xp … /usr/lib/libc.so.6
…
ffff8d27e000-ffff8d27f000 r-xp … [vdso]
ffff8d27f000-ffff8d281000 r--p … /usr/lib/ld-linux-aarch64.so.1
ffff8d281000-ffff8d283000 rw-p … /usr/lib/ld-linux-aarch64.so.1
ffffd83b9000-ffffd83da000 rw-p … [stack]

[tid: 0]; sp: 0xffffd83b91a0, &sp: 0xffffd83b91b0
--- after threads creation ----
aaaab0510000-aaaab0512000 r-xp … thread_vmas
aaaab0521000-aaaab0522000 r--p … thread_vmas
aaaab0522000-aaaab0523000 rw-p … thread_vmas
aaaad9392000-aaaad93b3000 rw-p … [heap]
ffff8c060000-ffff8c070000 ---p ……
ffff8c070000-ffff8c870000 rw-p …
ffff8c870000-ffff8c880000 ---p …
ffff8c880000-ffff8d080000 rw-p …
ffff8d080000-ffff8d208000 r-xp … /usr/lib/libc.so.6
…
ffff8d27e000-ffff8d27f000 r-xp … [vdso]
ffff8d27f000-ffff8d281000 r--p … /usr/lib/ld-linux-aarch64.so.1
ffff8d281000-ffff8d283000 rw-p … /usr/lib/ld-linux-aarch64.so.1
ffffd83b9000-ffffd83da000 rw-p … [stack]

[tid: 2]; sp: 0xffff8c86e810, &sp: 0xffff8c86e830
[tid: 1]; sp: 0xffff8d07e810, &sp: 0xffff8d07e830

#define NUM_THREADS 3

void print_stack_pointer(int thread_id) {
 uint64_t sp;
 asm volatile ("mov %0, sp" : "=r" (sp));
 printf("[tid: %d]; sp: 0x%lx, &sp: %p\n",
 thread_id, sp, &sp);
}

void* foo(void* arg) {
 int thread_id = *(int*) arg;
 print_stack_pointer(thread_id);
 return NULL;
}

void main() {

 int thread_ids[NUM_THREADS];
 pthread_t threads[NUM_THREADS];

 for (int i = 0; i < NUM_THREADS; i++) {
 thread_ids[i] = i + 1;
 pthread_create(&threads[i], NULL, foo,
 &thread_ids[i]);
 }

 for (int = 0; i < NUM_THREADS; i++) {
 pthread_join(threads[i], NULL);
 }
}

https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

