K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis
Lecture 06

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

100%

75%

50%

25%

Percentage of ppl. below grade

0%

Quiz-02

Grade

10

Quiz-02: You need to do something NOW.

100% ——

85% e nall

below 45%

75%

50%

25%

Percentage of ppl. below grade

0%

Grade

Overview

- We'll start from hardware and follow a question-oriented approach

* Basic (H/W & s/W)
* Abstractions

* Primitives

- Processes [Q: What is a process?] * Mechanisms

- IPC [Q: How do processes communicate?]

- Threads [Q: What is a thread?]

- Synchronization [Q: What goes wrong w/o synchronization?]

- Time Management [Q: What is scheduling?]

- Memory Management [Q: What is virtual memory?]

- Files [Q: What is a file descriptor?]

- Storage Management [Q: How do we allocate disk space to files?]

60

w B w
o o o

Average completion time (microseconds)

N
o

10

— Using threads
—— Using processes

5000

The miserable cost of fork()...

10000
Number of concurrent tasks

e

15000

20000

void process_task(int num){
is_prime(num);
_exit(0);

}

int main(int argc, char **argv) {

f;r (int i = 0; i < num_tasks; i++)
numbersl[i] = rand() % 10000000;

for (int i = O; i < num_tasks; i++) {
pid_t pid = fork():
if (pid == 0)
process_task(numbers[i]);
}

for (int i = O; i < num_tasks; i++)
wait(NULL);
}

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

Overview

- We'll start from hardware and follow a question-oriented approach

* Basic (H/W & s/W)
* Abstractions

* Primitives

* Mechanisms

— |- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]

- Synchronization [Q: What goes wrong w/o synchronization?]

- Time Management [Q: What is scheduling?]

- Memory Management [Q: What is virtual memory?]

- Files [Q: What is a file descriptor?]

- Storage Management [Q: How do we allocate disk space to files?]

Overview

- Inter-Process Communication (IPC)
- Q1: How do processes communicate with each other?
- Q2: Asynchronous IPC mechanisms?
- Q3: Synchronous IPC mechanisms?

Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process to communicate with another?

Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process o communicate with another?

*) Why need communication b/w processes? = Cooperation!

Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process o communicate with another?

*) Why need communication b/w processes? = Cooperation!

> The OS primitive for communication between processes is
called Inter-Process Communication (IPC)

Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process to communicate with another?

*) Why need communication b/w processes? = Cooperation!

> The OS primitive for communication between processes is
called Inter-Process Communication (IPC)

> Two core paradigms for IPC
- Synchronous: The recipient can be assumed "prepared"
The recipient cannot be assumed "prepared"

Asynchronous and synchronous IPC

> : The recipient process is not necessarily
waiting for a "message" to be delivered to it

- Example:

Asynchronous and synchronous IPC

> : The recipient process is not necessarily
waiting for a "message" to be delivered to it

- Example:

> Synchronous IPC: The recipient process is waiting for a
message to be delivered to it

- Example: POSIX pipes, POSIX shared memory

Asynchronous IPC: Signals

> is the most common async IPC mechanism

- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to
deliver a signal from one process to another

Asynchronous IPC: Signals

> is the most common async IPC mechanism

- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to
deliver a signal from one process to another

- A "signal" is a short message, identified by a small integer

Asynchronous IPC: Signals

> is the most common async IPC mechanism

- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to
deliver a signal from one process to another

- A "signal" is a short message, identified by a small integer
- There are 32 predefined POSTX signals

- SIGINT(2): Terminal interrupt signal
- SIGSEGV(11): Invalid memory reference

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

Asynchronous IPC: Signals

> is the most common async IPC mechanism
- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to
deliver a signal from one process to another
- A "signal" is a short message, identified by a small integer
- There are 32 predefined POSTX signals

- SIGINT(2): Terminal interrupt signal
- SIGSEGV(11): Invalid memory reference
- int sigaction(int signum, ... sigaction *act, ... sigaction *oldact)
- Used by a process to define an signal "handler": Action to take upon
delivery of a signal to it

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

Asynchronous IPC: Signals

> is the most common async IPC mechanism
- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to
deliver a signal from one process to another
- A "signal" is a short message, identified by a small integer
- There are 32 predefined POSTX signals

- SIGINT(2): Terminal interrupt signal
- SIGSEGV(11): Invalid memory reference
- int sigaction(int signum, ... sigaction *act, ... sigaction *oldact)
- Used by a process to define an signal "handler": Action to take upon
delivery of a signal to it

- Signals that cannot be "handled": SIGKILL(9), SIGSTOP(19) [see this]

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L3335

Asynchronous IPC: Signals

> (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,
an occurring in the system

- Examples include hardware exceptions and specific actions by processes
- The term signal is also used to refer to the event itself

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336

Asynchronous IPC: Signals

(POSIX spec)
A mechanism by which a process or thread may be notified of, or affected by,
an occurring in the system

Examples include hardware exceptions and specific actions by processes
The term signal is also used to refer to the event itself

(POSIX spec)
Memory established for a thread, in which catching signals sent
to that thread are executed

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337

Asynchronous IPC: Signals

> (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,
an occurring in the system

Examples include hardware exceptions and specific actions by processes
The term signal is also used to refer to the event itself

(POSIX spec)

Memory established for a thread, in which catching signals sent
to that thread are executed

(POSIX spec)

Memory associated with a thread, established upon request by the
implementation for a thread, , in which
signal handlers responding to signals sent to that thread may be executed

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_13

Asynchronous IPC: Signals

> (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,
an occurring in the system

Examples include hardware exceptions and specific actions by processes
The term signal is also used to refer to the event itself

(POSIX spec)

Memory established for a thread, in which catching signals sent
to that thread are executed

(POSIX spec) - Why do we need this?
Memory associated with a thread, established upon request by the
implementation for a thread, , in which
signal handlers responding to signals sent to that thread may be executed

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_13

Asynchronous IPC: Signals

> (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by,
an occurring in the system

Examples include hardware exceptions and specific actions by processes
The term signal is also used to refer to the event itself

(POSIX spec)

Memory established for a thread, in which catching signals sent
to that thread are executed

(POSIX spec)

Memory associated with a thread, established upon request by the
implementation for a thread, , in which
signal handlers responding to signals sent to that thread may be executed

> See int sigaltstack(stack_t *ss, stack_t *oss)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_13

Asynchronous IPC: Signals

> (POSIX spec)

- At the time of generation, a determination shall be made whether the signal
has been generated for a process or for a specific thread within a process

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> (POSIX spec)

- At the time of generation, a determination shall be made whether the signal
has been generated for a process or for a specific thread within a process
- Signals which are generated by some action attributable to a particular thread

(such as a hardware fault) shall be delivered to the thread that caused the
signal to be generated

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> (POSIX spec)

- At the time of generation, a determination shall be made whether the signal
has been generated for a process or for a specific thread within a process

- Signals which are generated by some action attributable to a particular thread
(such as a hardware fault) shall be delivered to the thread that caused the
signal to be generated

- Signals that are generated in association with a process ID or a process group
ID or an asynchronous event (such as terminal activity) shall be delivered to
that process or process group

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> (POSIX spec)

- During the time between the generation of a signal and its delivery or
acceptance, the signal is said to be pending, and a signal can be blocked from
delivery to a thread

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> (POSIX spec)

- During the time between the generation of a signal and its delivery or
acceptance, the signal is said to be pending, and a signal can be blocked from
delivery to a thread

- Signals generated for a process, shall be delivered to exactly one of the threads
within the process which is in a call to sigwait() function selecting that signal, or
has not blocked the delivery of the signal

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals

> (POSIX spec)

- During the time between the generation of a signal and its delivery or
acceptance, the signal is said to be pending, and a signal can be blocked from
delivery to a thread

- Signals generated for a process, shall be delivered to exactly one of the threads

within the process which is in a call to sigwait() function selecting that signal, or
has not blocked the delivery of the signal

- If the action associated with a blocked signal is anything other than to ignore
the signal, and if that signal is generated for the thread, the signal shall remain
pending until it is either (i) unblocked, or (ii) selected and returned by a call o
sigwait() function, or (iii) the action associated with it is set to ignore the signal

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com

Asynchronous IPC: Signals
_ Physical memory segments _

Process A
asks the OS
to deliver
signal to
process B
The OS has
changed the
top of process’
B stack
and its ip
#signo: argument for
function at %ip
Return address: %ip'
Stack The 05 add Saved registers °
the signal to The OS
the pending selects process
signals of @ B to be
@ process B scheduled in

Asynchronous IPC: Signals

> Sending a signal (Linux)

— kill()
— prepare_kill_siginfo() > Handling a signal (Linux x86)
— kill_something_info() — exit_to user mode loop(}
~ kill_proc_info() — arch _do s.ignal or_restart()
~ Kill_pid_info() — handle_signal()
—, kill_pid_info_type() — setup rt frame()
— group_send_sig_info() — x64 setup rt frame()

— do_send_sig_info()
— send_signal_locked()
— __send_signal_locked()

https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L3949
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L3933
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1572
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1476
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1471
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1449
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1409
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1262
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1183
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1042
https://elixir.bootlin.com/linux/v6.16/source/kernel/entry/common.c#L90
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L333
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L255
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L236
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal_64.c#L164

From an address translation error to a SIGSEGV

> do_translation_fault()

| do_page fault()
| int main(void) {
| arméb4 force sig fault(SIGSEGV, ...)
0.500 us | char *p = 0x123;
| force sig fault() *p = 0.
| force sig_info_to_task() }
| send signal locked()
d signal locked -
0.666 us : iznar:'ggamrg,e Q This is only a small subset
' | - of all things the OS does when
| complete_signal() your program causes a SIGSEGV
| signal_wake up()
| signal_wake up state() # How to enable kernel tracing
0.250 us | wake _up_state() § cd7sys/kernel/debug/tracing”
try to wake up state $ echo function_graph > current_tracer
. $ echo 114194 > set_ftrace_pid
0.333us | kick_process() $ echo 1> tracing_on
1.875 us | o $ cat trace > /tmp/kernel_trace.log

- $ echo 0 > tracing_on

https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L546
https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L766
https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L766
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1701
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1293
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1182
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1041
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L870
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L962
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched/signal.h#L438
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L720
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L4467
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L4467
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L3468
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a
synchronous unidirectional communication channel b/w two processes

- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a
synchronous unidirectional communication channel b/w two processes

- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Operations on pipes: read/ write/ close (similar to files, later...)
- Read on fds[0] will block until data is written to fds[1]

- , the number of is returned

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a
synchronous unidirectional communication channel b/w two processes

- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Operations on pipes: read/ write/ close (similar to files, later...)
- Read on fds[0] will block until data is written to fds[1]
- , the number of is returned

- A SIGPIPE will be delivered to a process trying fo write on a pipe whose
read end is closed

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a
synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe
Limitation of unnamed pipes
- The channel is unidirectional
- The channel can only be established b/w descendant processes

Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2]) is used to ask the kernel to create a
synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe
Limitation of unnamed pipes
- The channel is unidirectional
- The channel can only be established b/w descendant processes

> See int socket(int domain, int type, int protocol)
> See int mkfifo(char *pathname, mode_t1 mode)

Synchronous IPC: Pipes (unnamed)
_ Physical memory segments _

Process A

asks the OS Process B

to write data asks the OS to
to the pipe wait until data is

available for read
in the pipe

/

copy-out

/

copy-in

Latency (msec/message)

Synchronous IPC: Pipes (unnamed)
- Pipes

0.0

200 400 600 800 1000

Message Size (bytes)

Throughput (MB/s)

Synchronous IPC: Pipes (unnamed)

12500

10000

7500

5000

2500

- Pipes

200

400 600

Message Size (bytes)

800

1000

Synchronous IPC: Shared memory

> Pipe-based IPC (the tradeoff: what you get / what you lose...)

- Little responsibility = Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

Synchronous IPC: Shared memory

> Pipe-based IPC (the tradeoff: what you get / what you lose...)

- Little responsibility = Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to
a memory region that is shared among processes (shared memory)

Synchronous IPC: Shared memory

> Pipe-based IPC (the tradeoff: what you get / what you lose...)

- Little responsibility = Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to
a memory region that is shared among processes (shared memory)

- int shmget(key_t key, size_t size, ...)
- Creates a shared memory (shm) segment of "size", associated with "key"
- Returns the shm identifier

Synchronous IPC: Shared memory

> Pipe-based IPC (the tradeoff: what you get / what you lose...)
- Little responsibility = Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to
a memory region that is shared among processes (shared memory)

- int shmget(key_t key, size_t size, ...)
- Creates a shared memory (shm) segment of "size", associated with "key"
- Returns the shm identifier

- int shmat(int shmid, const void *shmaddr, ...)

- Attaches the shm segment identified by shmid to the VAS of the calling process
- If shmaddr is NULL, the OS chooses an unused virt. address to attach the segment

Synchronous IPC: Shared memory

> Pipe-based IPC (the tradeoff: what you get / what you lose...)

- Little responsibility = Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to
a memory region that is shared among processes (shared memory)

> Zero unnecessary copies
- New powers = New responsibilities
- Synchronization = More on this drama later

Synchronous IPC: Shared memory
_ Physical memory segments _

@ Process A

asks the OS to
create a shared
memory segment

@ Process A

asks the OS to
attach
the shared memory
segment to its
addr. space

\

@ Process B

asks the OS to
attach
the shared memory
segment to its
addr. space

—

Stack f Stack f

Synchronous IPC: Shared memory vs Pipes

- Pipes = Shared Memory

0.5
~N
&
o 0.4
7]
7]
£
< 0.3
O
Q
7
E 0.2
S
S
4 0.1
Q
-
3
0.0

200 400 600 800 1000

Message Size (bytes)

Synchronous IPC: Shared memory vs Pipes

- Pipes = Shared Memory
12500

o 10000
S
)
E 50
.
a
£ 5000
o
pe= |
e
£ 2500
-
————_-———-—-
0
200 400 600 800 1000

Message Size (bytes)

Overview

- We'll start from hardware and follow a question-oriented approach

—Events {Qx When does the 05 rur] . Basic (/W & 5/w)
' ' I * Abstractions

* Primitives
* Mechanisms

— |- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]

- Time Management [Q: What is scheduling?]

- Memory Management [Q: What is virtual memory?]

- Files [Q: What is a file descriptor?]

- Storage Management [Q: How do we allocate disk space to files?]

A primer on concurrency

Time Time Time Time

Ready — —_— —_— —_
wewe /7 N\ 7N N N

& .7’3 |7’4 Processor i .7’3 |7’4 Processor P .7)3 |?4 Processor | - 4Processor i .7’3 |7’4 Processor | - 4Processor

D m O

| u
i

1 :
I i

\) \)
\ Y

Parallelism w/o concurency Concurency and parallelism

|
uinml Inlaiml Il

\

—
—

Y Y
No concurency Concurency

Process dispatching

Dispatch P,

Ready queue /_\‘
Scheduler
interrupt

Ready queue /\‘

Processor

Processor

Scheduler
interrupt

Time

s

- Select P,
- Load PCB of P, and start execution

- Interrupt P, after Q amount of execution time
- Save processor state on PCB of P,
- Add PCB of P, in ready queue

- Select 7’6

Ctx switch
?2—> 7’6

- Load PCB of P, and start execution

- Interrupt P, after Q amount of execution time

60

w S (S
o o o

Average completion time (microseconds)

N
o

—— Using threads
—— Using processes

5000

Threads vs. Processes

10000
Number of concurrent tasks

15000

20000

void process_task(int num){
is_prime(num);
_exit(0);

}

int main(int argc, char **argv) {

f.;r (int i = 0; i < num_tasks; i++)
numbers[i] = rand() % 10000000;

for (int i = 0; i < num_tasks; i++) {
pid_t pid = fork();
if (pid == 0)
process_task(numbers[i]);
}

for (int i = O; i < num_tasks; i++)
wait(NULL);
}

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

The thread abstraction

- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction

- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> All threads of a process share
- The code, data, and heap segments
- Shared system resources allocated to their process

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction

- What is a thread? "A single flow of control within a process." (Strict
POSIX definition. 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> All threads of a process share

- The code, data, and heap segments
Shared system resources allocated to their process

Status (e.g., ready, running, or waiting)
Execution state (i.e., processor registers)
Thread-specific portion of the stack

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

Multithreaded process VAS

%ip (thread-2)
%ip (thread-1)

start_data
end_data
Higher‘ mem start brk
addresses -
brk (end of heap)

%sp (thread-2)
%fp (thread-2)

%sp (thread-1)
%fp (thread-1)

Multithreaded process VAS

#define NUM THREADS 3

void print stack pointer(int thread_id) {
uint64_t sp;
asm volatile ("mov %0, sp" : "=r" (sp));
printf(" "
thread_id, sp, &sp);
}

void* foo(void* arg){
int thread_id = *(int*) arg;
print stack pointer(thread_id);
return NULL;

}

void main() {

int thread_ids[NUM THREADS];
pthread_t threads[NUM THREADS];

for (int i=0;i < NUM_THREADS; i++) {
thread_ids[i] =i + 1;
pthread create(&threads|i], NULL, foo,
&thread_ids][i]);
}

for (int = 0; i < NUM_THREADS; i++) {
pthread join(threads[i], NULL);
}
}

--- before threads creation ----

aaaab0510000-aaaab0512000 r-xp ...
aaaab0521000-aaaab0522000 r--p ... thread_vmas
aaaab0522000-aaaab0523000 rw-p ... thread_vmas
aaaad9392000-aaaad93b3000 rw-p ... [heap]
ffff8d080000-ffff8d208000 r-xp ... Jusr/lib/libc.s0.6

thread_vmas

ffff8d27e000-ffff8d27f000 r-xp ... [vdso]
ffff8d27f000-ffff8d281000 r--p ... /usr/lib/ld-linux-aarch64.s0.1
ffff8d281000-ffff8d283000 rw-p ... /usr/lib/ld-linux-aarch64.s0.1
ffffd83b9000-ffffd83da000 rw-p ... [stack]

[tid: 0]; sp: Oxffffd83b91a0, &sp: 0xffffd83b91b0

--- after threads creation ----

aaaab0510000-aaaab0512000 r-xp ... thread vmas
aaaab0521000-aaaab0522000 r--p ... thread_vmas
aaaab0522000-aaaab0523000 rw-p ... thread_vmas
aaaad9392000-aaaad93b3000 rw-p ... [heap]
ffff8c060000-ffff8c070000 ---p
ffff8c070000-ffff8c870000 rw-p ...
ffff8c870000-ffff8c880000 ---p ...
ffff8c880000-ffff8d080000 rw-p ...
ffff8d080000-ffff8d208000 r-xp ... /ust/lib/libc.s0.6
ffff8d27e000-ffff8d27f000 r-xp ... [vdso]
ffff8d27f000-ffff8d281000 r--p ... {usr/lib/Id-linux-aarch64.s0.1
ffff8d281000-ffff8d283000 rw-p ... /usr/lib/ld-linux-aarch64.s0.1
ffffd83b9000-ffffd83da000 rw-p ... [stack]

[tid: 2]; sp: 0xffff8c86e810, &sp: 0xffff8c86e830
[tid: 1]; sp: Oxffff8d07e810, &sp: 0xffff8d07e830

https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

