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Quiz-02: You need to do something NOW.
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Overview
- We'll start from hardware and follow a question-oriented approach 

- Intro [Q: What is an OS?] 
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms



The miserable cost of fork()...

void process_task(int num){
  is_prime(num);
  _exit(0);
}

int main(int argc, char **argv) {
  …
 for (int i = 0; i < num_tasks; i++) 
     numbers[i] = rand() % 10000000;
 …
 for (int i = 0; i < num_tasks; i++) {
     pid_t pid = fork();
     if (pid == 0) 
         process_task(numbers[i]);
  }

 for (int i = 0; i < num_tasks; i++) 
     wait(NULL);
}

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
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Overview
- Inter-Process Communication (IPC)

- Q1: How do processes communicate with each other?
- Q2: Asynchronous IPC mechanisms?
- Q3: Synchronous IPC mechanisms?

                 …
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Inter-Process Communication (IPC)

A process has, so far, been the de-facto isolation mechanism
- What if we wish a process to communicate with another?

*) Why need communication b/w processes? ⇒ Cooperation!

> The OS primitive for communication between processes is 
called Inter-Process Communication (IPC)

> Two core paradigms for IPC
- Synchronous: The recipient can be assumed "prepared"
- Asynchronous: The recipient cannot be assumed "prepared"
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waiting for a "message" to be delivered to it
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Asynchronous and synchronous IPC

> Asynchronous IPC: The recipient process is not necessarily 
waiting for a "message" to be delivered to it
- Example: POSIX signals

> Synchronous IPC: The recipient process is waiting for a 
message to  be delivered to it
- Example: POSIX pipes, POSIX shared memory
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Asynchronous IPC: Signals

> POSIX signals is the most common async IPC mechanism
- The syscall int kill(pid_t pid, int signo) is used to ask the kernel to 

deliver a signal from one process to another
- A "signal" is a short message, identified by a small integer
- There are 32 predefined POSIX signals

- SIGINT(2):  Terminal interrupt signal
- SIGSEGV(11): Invalid memory reference

- int sigaction(int signum, … sigaction *act, … sigaction *oldact) 
- Used by a process to define an signal "handler": Action to take   upon 

delivery of a signal to it
- Signals that cannot be "handled": SIGKILL(9), SIGSTOP(19) [see this]

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L3335


Asynchronous IPC: Signals

> 3.336 Signal  (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by, 

an event occurring in the system
- Examples include hardware exceptions and specific actions by processes 
- The term signal is also used to refer to the event itself

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
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> 3.336 Signal  (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by, 

an event occurring in the system
- Examples include hardware exceptions and specific actions by processes 
- The term signal is also used to refer to the event itself

3.337 Signal Stack  (POSIX spec)
- Memory established for a thread, in which signal handlers catching signals sent 

to that thread are executed

3.13 Alternate Signal Stack  (POSIX spec) – Why do we need this?
- Memory associated with a thread, established upon request by the 

implementation for a thread, separate from the thread signal stack, in which 
signal handlers responding to signals sent to that thread may be executed
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Asynchronous IPC: Signals

> 3.336 Signal  (POSIX spec)
- A mechanism by which a process or thread may be notified of, or affected by, 

an event occurring in the system
- Examples include hardware exceptions and specific actions by processes 
- The term signal is also used to refer to the event itself

3.337 Signal Stack  (POSIX spec)
- Memory established for a thread, in which signal handlers catching signals sent 

to that thread are executed

3.13 Alternate Signal Stack  (POSIX spec)
- Memory associated with a thread, established upon request by the 

implementation for a thread, separate from the thread signal stack, in which 
signal handlers responding to signals sent to that thread may be executed

> See int sigaltstack(stack_t *ss, stack_t *oss) 

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_336
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_337
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Asynchronous IPC: Signals

> 2.4.1 Signal Generation and Delivery  (POSIX spec)
- At the time of generation, a determination shall be made whether the signal 

has been generated for a process or for a specific thread within a process 

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com
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> 2.4.1 Signal Generation and Delivery  (POSIX spec)
- At the time of generation, a determination shall be made whether the signal 

has been generated for a process or for a specific thread within a process 
- Signals which are generated by some action attributable to a particular thread 

(such as a hardware fault) shall be delivered to the thread that caused the 
signal to be generated

- Signals that are generated in association with a process ID or a process group 
ID or an asynchronous event (such as terminal activity) shall be delivered to 
that process or process group
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Asynchronous IPC: Signals

> 2.4.1 Signal Generation and Delivery  (POSIX spec)
- During the time between the generation of a signal and its delivery or 

acceptance, the signal is said to be pending, and a signal can be blocked from 
delivery to a thread

- Signals generated for a process, shall be delivered to exactly one of the threads 
within the process which is in a call to sigwait() function selecting that signal, or 
has not blocked the delivery of the signal

- If the action associated with a blocked signal is anything other than to ignore 
the signal, and if that signal is generated for the thread, the signal shall remain 
pending until it is either (i) unblocked, or (ii) selected and returned by a call to 
sigwait() function, or (iii) the action associated with it is set to ignore the signal

https://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html?utm_source=chatgpt.com


Asynchronous IPC: Signals
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Asynchronous IPC: Signals

> Sending a signal (Linux)
→ kill()
 → prepare_kill_siginfo()
  → kill_something_info() 
   → kill_proc_info() 
    → kill_pid_info() 
     → kill_pid_info_type()
      → group_send_sig_info()
        → do_send_sig_info()
        → send_signal_locked()
         → __send_signal_locked()

> Handling a signal (Linux x86)
→ exit_to_user_mode_loop()
 → arch_do_signal_or_restart() 
  → handle_signal()
   → setup_rt_frame()
    → x64_setup_rt_frame()

https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L3949
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L3933
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1572
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1476
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1471
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1449
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1409
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1262
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1183
https://elixir.bootlin.com/linux/v6.16/source/kernel/signal.c#L1042
https://elixir.bootlin.com/linux/v6.16/source/kernel/entry/common.c#L90
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L333
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L255
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal.c#L236
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/kernel/signal_64.c#L164


From an address translation error to a SIGSEGV
        > do_translation_fault() 
               |      do_page_fault()
               |        ...
               |        arm64_force_sig_fault(SIGSEGV, ...) 
   0.500 us  |          ...
               |          force_sig_fault() 
               |            force_sig_info_to_task() 
               |              send_signal_locked() 
               |                __send_signal_locked() 
   0.666 us  |                  prepare_signal();
               |          ...
               |                  complete_signal() 
               |                    signal_wake_up() 
               |                      signal_wake_up_state() 
 0.250 us    |                        wake_up_state() 

             try_to_wake_up_state
                      ...            
 0.333 us    |                      kick_process()
 1.875 us    |                      ...

 
int main(void) {
  char *p = 0x123;
  *p = 0;
 }

This is only a small subset
of all things the OS does when
your program causes a SIGSEGV 

# How to enable kernel tracing

$ cd /sys/kernel/debug/tracing
$ echo function_graph > current_tracer
$ echo 114194 > set_ftrace_pid
$ echo 1 > tracing_on
$ cat trace > /tmp/kernel_trace.log
$ echo 0 > tracing_on

https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L546
https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L766
https://elixir.bootlin.com/linux/v6.14/source/arch/arm64/mm/fault.c#L766
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1701
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1293
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1182
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L1041
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L870
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L962
https://elixir.bootlin.com/linux/v6.14/source/include/linux/sched/signal.h#L438
https://elixir.bootlin.com/linux/v6.14/source/kernel/signal.c#L720
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L4467
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L4467
https://elixir.bootlin.com/linux/v6.14/source/kernel/sched/core.c#L3468
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
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> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2])  is used to ask the kernel to create a 

synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe
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Synchronous IPC: Pipes (unnamed)

> POSIX pipes is the most common synchronous IPC mechanism
- The syscall int pipe (int fds[2])  is used to ask the kernel to create a 

synchronous unidirectional communication channel b/w two processes
- fds[0]: The read end of the pipe
- fds[1]: The write end of the pipe

Limitation of unnamed pipes
- The channel is unidirectional
- The channel can only be established b/w descendant processes

> Bidirectional channels? See int socket(int domain, int type, int protocol)
> System-wide visible pipes? See int mkfifo(char *pathname, mode_t mode)
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Synchronous IPC: Shared memory
> Pipe-based IPC (the tradeoff: what you get / what you lose…)

- Little responsibility ⇒ Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to 
a memory region that is shared among processes (shared memory)

- int shmget(key_t key, size_t size, ...) 
- Creates a shared memory (shm) segment  of "size", associated with "key"
- Returns the shm identifier

- int shmat(int shmid, const void *shmaddr, ...) 
- Attaches the shm segment identified by shmid to the VAS of the calling process
- If shmaddr is NULL, the OS chooses an unused virt. address to attach the segment



Synchronous IPC: Shared memory
> Pipe-based IPC (the tradeoff: what you get / what you lose…)

- Little responsibility ⇒ Wait for a message to be delivered
- Slow: Two copies (in/out) are required on every message exchanged

> How can processes avoid this overhead? Ask the kernel to point directly to 
a memory region that is shared among processes (shared memory)

> Zero unnecessary copies
- New powers ⇒ New responsibilities
- Synchronization ⇒ More on this drama later
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Overview
- We'll start from hardware and follow a question-oriented approach 

- Intro [Q: What is an OS?] 
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms
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Process dispatching
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void process_task(int num){
  is_prime(num);
  _exit(0);
}

int main(int argc, char **argv) {
  …
 for (int i = 0; i < num_tasks; i++) 
     numbers[i] = rand() % 10000000;
 …
 for (int i = 0; i < num_tasks; i++) {
     pid_t pid = fork();
     if (pid == 0) 
         process_task(numbers[i]);
  }

 for (int i = 0; i < num_tasks; i++) 
     wait(NULL);
}

Threads vs. Processes
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The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict 
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads 
executing within it." (Strict POSIX definition, 3/189.)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
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> All threads of a process share
- The code, data, and heap segments
- Shared system resources allocated to their process
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The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict 
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads 
executing within it." (Strict POSIX definition, 3/189.)

> All threads of a process share
- The code, data, and heap segments
- Shared system resources allocated to their process

> Each thread has its own
- Status (e.g., ready, running, or waiting)
- Execution state (i.e., processor registers)
- Thread-specific portion of the stack
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Multithreaded process VAS
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Multithreaded process VAS
 --- before threads creation ---- 
aaaab0510000-aaaab0512000 r-xp …       thread_vmas
aaaab0521000-aaaab0522000 r--p …        thread_vmas
aaaab0522000-aaaab0523000 rw-p …      thread_vmas
aaaad9392000-aaaad93b3000 rw-p …      [heap]
ffff8d080000-ffff8d208000 r-xp …               /usr/lib/libc.so.6
…
ffff8d27e000-ffff8d27f000 r-xp …          [vdso]
ffff8d27f000-ffff8d281000 r--p …           /usr/lib/ld-linux-aarch64.so.1
ffff8d281000-ffff8d283000 rw-p …        /usr/lib/ld-linux-aarch64.so.1
ffffd83b9000-ffffd83da000 rw-p …     [stack]

[tid: 0]; sp: 0xffffd83b91a0, &sp: 0xffffd83b91b0
--- after threads creation ---- 
aaaab0510000-aaaab0512000 r-xp …   thread_vmas
aaaab0521000-aaaab0522000 r--p …    thread_vmas
aaaab0522000-aaaab0523000 rw-p …  thread_vmas
aaaad9392000-aaaad93b3000 rw-p …  [heap]
ffff8c060000-ffff8c070000 ---p ……
ffff8c070000-ffff8c870000 rw-p …
ffff8c870000-ffff8c880000 ---p …
ffff8c880000-ffff8d080000 rw-p …
ffff8d080000-ffff8d208000 r-xp …      /usr/lib/libc.so.6
…
ffff8d27e000-ffff8d27f000 r-xp …       [vdso]
ffff8d27f000-ffff8d281000 r--p …        /usr/lib/ld-linux-aarch64.so.1
ffff8d281000-ffff8d283000 rw-p …     /usr/lib/ld-linux-aarch64.so.1
ffffd83b9000-ffffd83da000 rw-p …     [stack]

[tid: 2]; sp: 0xffff8c86e810, &sp: 0xffff8c86e830
[tid: 1]; sp: 0xffff8d07e810, &sp: 0xffff8d07e830

#define NUM_THREADS 3

void print_stack_pointer(int thread_id) {
    uint64_t sp;
    asm volatile ("mov %0, sp" : "=r" (sp));   
    printf("[tid: %d]; sp: 0x%lx, &sp: %p\n", 
               thread_id, sp, &sp);
}

void* foo(void* arg) {
    int thread_id = *(int*) arg;
    print_stack_pointer(thread_id);
    return NULL;
}

void  main()  {

    int thread_ids[NUM_THREADS];
    pthread_t threads[NUM_THREADS];
    
    for (int i = 0; i < NUM_THREADS; i++) {
        thread_ids[i] = i + 1; 
        pthread_create(&threads[i], NULL, foo,
                                       &thread_ids[i]);
    }

   for (int = 0; i < NUM_THREADS; i++) {
        pthread_join(threads[i], NULL); 
    }
}
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