
 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis
Lecture 07

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms

Overview
- Threads

- Q1: What is a thread?
- Q2: Threads vs. processes?
- Q3: How does the OS implement threads?
- Q4: From uniprogramming to multiprogramming?
- Q5: "How to" concurrency?

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> Each thread has its own
- Stack

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> Each thread has its own
- Stack

> All threads of a process share
- The code, data, and heap segments
- Shared system resources allocated to their process

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

Multithreaded process VAS

Higher mem
addresses

Heap

.text segment (code)

 .data, .bss

.rodata

%ip (thread-1)

Stack
%sp (thread-2)

%ip (thread-2)

brk (end of heap)

Free memory

Stack

 %fp (thread-2)

%sp (thread-1)
 %fp (thread-1)

start_data

end_data

start_brk

Free memory

Multithreaded process VAS
 --- before threads creation ----
aaaab0510000-aaaab0512000 r-xp … thread_vmas
aaaab0521000-aaaab0522000 r--p … thread_vmas
aaaab0522000-aaaab0523000 rw-p … thread_vmas
aaaad9392000-aaaad93b3000 rw-p … [heap]
ffff8d080000-ffff8d208000 r-xp … /usr/lib/libc.so.6
…
ffff8d27e000-ffff8d27f000 r-xp … [vdso]
ffff8d27f000-ffff8d281000 r--p … /usr/lib/ld-linux-aarch64.so.1
ffff8d281000-ffff8d283000 rw-p … /usr/lib/ld-linux-aarch64.so.1
ffffd83b9000-ffffd83da000 rw-p … [stack]

[tid: 0]; sp: 0xffffd83b91a0, &sp: 0xffffd83b91b0
--- after threads creation ----
aaaab0510000-aaaab0512000 r-xp … thread_vmas
aaaab0521000-aaaab0522000 r--p … thread_vmas
aaaab0522000-aaaab0523000 rw-p … thread_vmas
aaaad9392000-aaaad93b3000 rw-p … [heap]
ffff8c060000-ffff8c070000 ---p ……
ffff8c070000-ffff8c870000 rw-p …
ffff8c870000-ffff8c880000 ---p …
ffff8c880000-ffff8d080000 rw-p …
ffff8d080000-ffff8d208000 r-xp … /usr/lib/libc.so.6
…
ffff8d27e000-ffff8d27f000 r-xp … [vdso]
ffff8d27f000-ffff8d281000 r--p … /usr/lib/ld-linux-aarch64.so.1
ffff8d281000-ffff8d283000 rw-p … /usr/lib/ld-linux-aarch64.so.1
ffffd83b9000-ffffd83da000 rw-p … [stack]

[tid: 2]; sp: 0xffff8c86e810, &sp: 0xffff8c86e830
[tid: 1]; sp: 0xffff8d07e810, &sp: 0xffff8d07e830

#define NUM_THREADS 3

void print_stack_pointer(int thread_id) {
 uint64_t sp;
 asm volatile ("mov %0, sp" : "=r" (sp));
 printf("[tid: %d]; sp: 0x%lx, &sp: %p\n",
 thread_id, sp, &sp);
}

void* foo(void* arg) {
 int thread_id = *(int*) arg;
 print_stack_pointer(thread_id);
 return NULL;
}

void main() {

 int thread_ids[NUM_THREADS];
 pthread_t threads[NUM_THREADS];

 for (int i = 0; i < NUM_THREADS; i++) {
 thread_ids[i] = i + 1;
 pthread_create(&threads[i], NULL, foo,
 &thread_ids[i]);
 }

 for (int = 0; i < NUM_THREADS; i++) {
 pthread_join(threads[i], NULL);
 }
}

https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.16.3/C/ident/AT_MINSIGSTKSZ
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> Unlike processes

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> Unlike processes
- Thread creation is inexpensive (no need to duplicate the addr. space)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> Unlike processes
- Thread creation is inexpensive (no need to duplicate the addr. space)
- Switching between threads of the same process is inexpensive

● Same address space / context switch ⇒ TLB remains hot

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> Unlike processes
- Thread creation is inexpensive (no need to duplicate the addr. space)
- Switching between threads of the same process is inexpensive

● Same address space / context switch ⇒ TLB remains hot
- Communication b/w threads of the same process is inexpensive

● Can be implemented with no OS intervention

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

The thread abstraction
- What is a thread? "A single flow of control within a process." (Strict
POSIX definition, 3/190.)

- What is a process? "An address space with one or more threads
executing within it." (Strict POSIX definition, 3/189.)

> Unlike processes
- Thread creation is inexpensive (no need to duplicate the addr. space)
- Switching between threads of the same process is inexpensive

● Same address space / context switch ⇒ TLB remains hot
- Communication b/w threads of the same process is inexpensive

● Can be implemented with no OS intervention
- New powers ⇒ New responsibilities…

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_190
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

void process_task(int num){
 is_prime(num);
 _exit(0);
}

int main(int argc, char **argv) {
 …
 for (int i = 0; i < num_tasks; i++)
 numbers[i] = rand() % 10000000;
 …
 for (int i = 0; i < num_tasks; i++) {
 pid_t pid = fork();
 if (pid == 0)
 process_task(numbers[i]);
 }

 for (int i = 0; i < num_tasks; i++)
 wait(NULL);
}

Threads vs. Processes

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

How does the OS implement threads
- POSIX-compliant OSes need to manage both threads and processes

How does the OS implement threads
- POSIX-compliant OSes need to manage both threads and processes
- Easy to support threads, if already supporting processes

How does the OS implement threads
- POSIX-compliant OSes need to manage both threads and processes
- Easy to support threads, if already supporting processes

- Scheduling decisions ⇒ On threads
- Address space decisions ⇒ On processes

How does the OS implement threads
- POSIX-compliant OSes need to manage both threads and processes
- Easy to support threads, if already supporting processes

- Scheduling decisions ⇒ On threads
- Address space decisions ⇒ On processes
- Book-keeping decisions ⇒ On processes (modulo execution state)

How does the OS implement threads
- POSIX-compliant OSes need to manage both threads and processes
- Easy to support threads, if already supporting processes

- Scheduling decisions ⇒ On threads
- Address space decisions ⇒ On processes
- Book-keeping decisions ⇒ On processes (modulo execution state)

do {
Get a process P from ready queue
Change to the new address space

Execute P until time Q expires
Put P back in ready queue

} while(1)

How does the OS implement threads
- POSIX-compliant OSes need to manage both threads and processes
- Easy to support threads, if already supporting processes

- Scheduling decisions ⇒ On threads
- Address space decisions ⇒ On processes
- Book-keeping decisions ⇒ On processes (modulo execution state)

do {
Get a process P from ready queue
Change to the new address space

Execute P until time Q expires
Put P back in ready queue

} while(1)

do {
Get a thread T from ready queue
 Change address space, if needed

Execute T until time Q expires
Put T back in ready queue

} while(1)

How does the OS implement threads
- POSIX does not dictate whether threads should have their own

schedulable context and run simultaneously on different processors

How does the OS implement threads
- POSIX does not dictate whether threads should have their own

schedulable context and run simultaneously on different processors
- There are various thread implementation models. At one end of the spectrum is the "library-thread model". In such a model, the

threads of a process are not visible to the operating system kernel, and the threads are not kernel scheduled entities. The process is
the only kernel scheduled entity. The process is scheduled onto the processor by the kernel according to the scheduling attributes of
the process. The threads are scheduled onto the single kernel scheduled entity (the process) by the run-time library according to the
scheduling attributes of the threads. A problem with this model is that it constrains concurrency. Since there is only one kernel
scheduled entity (namely, the process), only one thread per process can execute at a time. If the thread that is executing blocks on I/O,
then the whole process blocks.

-
- At the other end of the spectrum is the "kernel-thread model". In this model, all threads are visible to the operating system kernel.

Thus, all threads are kernel scheduled entities, and all threads can concurrently execute. The threads are scheduled onto processors by
the kernel according to the scheduling attributes of the threads. The drawback to this model is that the creation and management of
the threads entails operating system calls, as opposed to subroutine calls, which makes kernel threads heavier weight than library
threads.

How does the OS implement threads
- POSIX does not dictate whether threads should have their own

schedulable context and run simultaneously on different processors
- Threads can be implemented as user-level or kernel-level threads

How does the OS implement threads
- POSIX does not dictate whether threads should have their own

schedulable context and run simultaneously on different processors
- Threads can be implemented as user-level or kernel-level threads

 > User-level threads (Solaris "green" threads, java threads)
- Multiple threads are mapped to one schedulable kernel context
- No real concurrency: One thread blocks ⇒ All process' threads block
- The process is the only kernel scheduled entity
- Only one syscall per time ⇒ One kernel stack per process
- Faster to create (syscalls: ~70 cycles >> procedure calls: ~5 cycles)

How does the OS implement threads
- POSIX does not dictate whether threads should have their own

schedulable context and run simultaneously on different processors
- Threads can be implemented as user-level or kernel-level threads

 > kernel-level threads (e.g., glibc pthreads in Linux)
- Slower to create and interact with (glibc uses clone3 syscall)
- Each thread is mapped to one schedulable kernel context (1:1)
- Integrated with OS scheduling decisions
- One thread blocks ⇒ the OS will schedule another

How does the OS implement threads
- POSIX does not dictate whether threads should have their own

schedulable context and run simultaneously on different processors
- Threads can be implemented as user-level or kernel-level threads

 > kernel-level threads (e.g., glibc pthreads in Linux)
- Slower to create and interact with (glibc uses clone3 syscall)
- Each thread is mapped to one schedulable kernel context (1:1)
- Integrated with OS scheduling decisions
- One thread blocks ⇒ the OS will schedule another

 Watch out: Kernel-level thread ≠ Kernel-space thread (kthread)

How does the OS implement threads
- POSIX does not dictate whether threads should have their own

schedulable context and run simultaneously on different processors
- Threads can be implemented as user-level or kernel-level threads

 > kernel-level threads (e.g., glibc pthreads in Linux)
- Slower to create and interact with (glibc uses clone3 syscall)
- Each thread is mapped to one schedulable kernel context (1:1)
- Integrated with OS scheduling decisions
- One thread blocks ⇒ the OS will schedule another

 Read the scheduler activations paper for more on a hybrid approach

https://web.eecs.umich.edu/~mosharaf/Readings/Scheduler-Activations.pdf

Historical Evolution: From uniprogramming to multitasking

- Uniprogramming: Load a program in memory and
execute it to completion
- Human operator acts as the dispatcher

Historical Evolution: From uniprogramming to multitasking

- Uniprogramming: Load a program in memory and
execute it to completion
- Human operator acts as the dispatcher
- while (jobs) {
 load a program in memory
 execute to completion
 }

Historical Evolution: From uniprogramming to multitasking

- Uniprogramming: Load a program in memory and
execute it to completion
- Human operator acts as the dispatcher
- while (jobs) {
 load a program in memory
 execute to completion
 }

- Simple idea: The OS is just a library of device drivers for
primitive hardware resources

Historical Evolution: From uniprogramming to multitasking

- Uniprogramming: Load a program in memory and
execute it to completion
- Human operator acts as the dispatcher
- while (jobs) {
 load a program in memory
 execute to completion
 }

- Simple idea: The OS is just a library of device drivers for
primitive hardware resources

- OK idea for the 70's mainframes
- Resource underutilization: one job blocks, everyone waits

 > Leads to bad throughput: job completion per unit of time

- Multiprogramming: Multiple jobs in memory, at the same time

Historical Evolution: From uniprogramming to multitasking

- Multiprogramming: Multiple jobs in memory, at the same time
- The OS gives the processor to a new process every time the

current process needs to block (e.g., while waiting for I/O)

Historical Evolution: From uniprogramming to multitasking

- Multiprogramming: Multiple jobs in memory, at the same time
- The OS gives the processor to a new process every time the

current process needs to block (e.g., while waiting for I/O)
- No strict time allocation: A process may keep running until it

blocks, or to completion, or indefinitely

Historical Evolution: From uniprogramming to multitasking

- Multiprogramming: Multiple jobs in memory, at the same time
- The OS gives the processor to a new process every time the

current process needs to block (e.g., while waiting for I/O)
- No strict time allocation: A process may keep running until it

blocks, or to completion, or indefinitely

- Functionality required
- Virtual memory (fault isolation to keep many procs in mem.)
- Interrupts (for async events; e.g., to support disk DMAs)

Historical Evolution: From uniprogramming to multitasking

- Multiprogramming: Multiple jobs in memory, at the same time
- The OS gives the processor to a new process every time the

current process needs to block (e.g., while waiting for I/O)
- No strict time allocation: A process may keep running until it

blocks, or to completion, or indefinitely

- Functionality required
- Virtual memory (fault isolation to keep many procs in mem.)
- Interrupts (for async events; e.g., to support disk DMAs)

> Improves processor utilization ⇒ Better throughput
> Violates one of the three OS desirable properties [Q: Which?]

Historical Evolution: From uniprogramming to multitasking

- Multitasking: Multiple jobs in memory, at the same time, the OS
allocates the processor to each of them with an upper bound

Historical Evolution: From uniprogramming to multitasking

- Multitasking: Multiple jobs in memory, at the same time, the OS
allocates the processor to each of them with an upper bound
- Implemented with preemptive scheduling (e.g., timesharing)
- Each processor has a dedicated timer which expires periodically

- The OS takes control ⇒ Inspects execution statistics
- Decides where to allocate the processor next

Historical Evolution: From uniprogramming to multitasking

- Multitasking: Multiple jobs in memory, at the same time, the OS
allocates the processor to each of them with an upper bound
- Implemented with preemptive scheduling (e.g., timesharing)
- Each processor has a dedicated timer which expires periodically

- The OS takes control ⇒ Inspects execution statistics
- Decides where to allocate the processor next

- Fast switching gives tasks the illusion of a dedicated processor

Historical Evolution: From uniprogramming to multitasking

- Multitasking: Multiple jobs in memory, at the same time, the OS
allocates the processor to each of them with an upper bound
- Implemented with preemptive scheduling (e.g., timesharing)
- Each processor has a dedicated timer which expires periodically

- The OS takes control ⇒ Inspects execution statistics
- Decides where to allocate the processor next

- Fast switching gives tasks the illusion of a dedicated processor

> Improves processor utilization ⇒ Better throughput
> Improves system responsiveness ⇒ Immediate feedback to users

Historical Evolution: From uniprogramming to multitasking

T1 T2 T4T3 Processor

Time

Multitasking on one processor

Concurrency

T1 T2 T4T3 Processor Processor

Concurrency and parallelism

Time

Multitasking on Symmetric Multiprocessor (SMP)

T1 T2 T4T3 Processor Processor

Concurrency and parallelism

Time

Multitasking on Symmetric Multiprocessor (SMP)

✗Unbalanced Load

T1 T2 T4T3 Processor Processor

Multitasking on SMP and load balancing

✔Load balanced

T1 T2 T4T3 Processor Processor

Multitasking on SMP and load balancing

✔Load balanced

Processor affinity?

T1 T2 T4T3 Processor Processor

Multitasking on SMP and load balancing w/ affinity

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

 Look up the translation
index from main mem.

✔Load balanced

Processor affinity?

✔Affinity

Concurrency

- Concurrency: Multiple tasks (i.e., execution contexts: processes or
threads) run seemingly simultaneously on shared hardware resources

- Time–sharing, preemptive scheduling: Tasks run for at most a time
quantum, and either yield the processor (voluntarily ctx switch) or get
preempted by the OS (involuntarily ctx switch)

- Small quantum (10–100 ms) + SMP ⇒ Tasks execute multiple times
per sec and appear responsive to their users (akin to running
simultaneously)

Concurrency

> Concurrency is the desirable execution paradigm ♡
- Responsiveness: No task stays blocked for perceptibly long

- Throughput: No single task can monopolize the processor ⇒Allowing,
overall, more tasks to execute (and potentially complete) in a unit of time

- Scalability: The more hardware resources available, the more concurrent
tasks the system can execute on a unit of time

Concurrency

> Concurrency is the desirable execution paradigm ♡
- Responsiveness: No task stays blocked for perceptibly long

- Throughput: No single task can monopolize the processor ⇒Allowing,
overall, more tasks to execute (and potentially complete) in a unit of time

- Scalability: The more hardware resources available, the more concurrent
tasks the system can execute on a unit of time

> Programmer's responsibilities:
- Divide and conquer: Split code in small routines of independent tasks
- Avoid shared state ⇒ Avoid coordination / locks

