
 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis
Lecture 08

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What is synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms

Necessary glossary to talk about synchronization
- Parallel operations: Operations that are happening at the same

time, on different processors
-Concurrent operations: Operations that are happening in overlapping

time intervals, on the same processor, seemingly simultaneously
- Interleaving of execution: The order with which concurrent

operations are scheduled in for and out of execution
-Happens-before relationship?

Given two concurrent operations p1, p2 with a "dependency"
such that p1 must always "happen before" p2,
synchronization mandates that t1(i) < t2(i) ∀ i ∈ [1, n],
where
 t1(i) is the time when p1 ends its i-th execution
 t2(i) it the time when p2 starts its i-th execution

> We have a problem in the above definition…

What is synchronization?

Necessary glossary to talk about synchronization
- Parallel operations: Operations that are happening at the same

time, on different processors
-Concurrent operations: Operations that are happening in

overlapping time intervals seemingly simultaneously
- Interleaving of execution: The order with which concurrent

operations are scheduled in for and out of execution
-Happens-before relationship?

Departing from temporal ordering
> Temporal ordering: Arrangement of events in a sequence
according to physical time
- What most human understand when you talk about time!
- Example: An airline reservation request will be granted if (i) it is made

before the flight is filled, and (ii) before the flight departs

> Ordering is not temporal on a multiprocessor (distributed) system
- Any conversation is in terms of physical time must be reexamined when

considering concurrent events in a distributed system
- Real clocks are not perfectly accurate ⇒ can't keep precise phys. time

"happens before" on distributed systems

> Time, Clocks, and the Ordering of Events in a Distributed System, 1978, by Leslie Lamport

https://lamport.azurewebsites.net/pubs/time-clocks.pdf

Partial ordering of concurrent operations

> Logical clocks allows us to define a partial ordering of concurrent
operations on a multiprocessor system

> Synchronization is used to enforce that some partial order of concurrent
operations (i.e., some "happens-before" relationship) exists

Given two concurrent operations p1, p2
with a "dependency" such that p1 must always "happen before" p2,
synchronization mandates that t1(i) < t2(i) ∀ i ∈ [1, n], where
 t1(i) is the time when p1 ends its i-th execution
 t2(i) is the time when p2 starts its i-th execution

Necessary glossary to talk about synchronization
- Parallel operations: Operations that are happening at the same

time, on different processors
-Concurrent operations: Operations that are happening in

overlapping time intervals seemingly simultaneously
- Interleaving of execution: The order with which concurrent

operations are scheduled in for and out of execution
-Happens-before relationship: A partial ordering of concurrent

operations of a program
-Sequential consistency?

Reasoning about sequential consistency

> How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs, 1977, by Leslie Lamport

https://lamport.azurewebsites.net/pubs/multi.pdf

Reasoning about sequential consistency

> How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs, 1977, by Leslie Lamport

https://lamport.azurewebsites.net/pubs/multi.pdf

Necessary glossary to talk about synchronization
- Parallel operations: Operations that are happening at the same time,

on different processors
-Concurrent operations: Operations that are happening in overlapping

time intervals seemingly simultaneously
- Interleaving of execution: The order with which concurrent operations

are scheduled in for and out of execution
-Happens-before relationship: A partial ordering of concurrent

operations of a program
-Sequential consistency: The result of any execution of concurrent

operations is the same as if all operations on all processors were executed
in some sequential (global) order, and the operations of each individual
processor appear in this sequence in the order specified by its program

Necessary glossary to talk about synchronization
- Parallel operations: Operations that are happening at the same time,

on different processors
-Concurrent operations: Operations that are happening in overlapping

time intervals seemingly simultaneously
- Interleaving of execution: The order with which concurrent operations

are scheduled in for and out of execution
-Happens-before relationship: A partial ordering of concurrent

operations of a program
-Sequential consistency: The result of any execution of concurrent

operations is the same as if all operations on all processors were executed
in some sequential (global) order, and the operations of each individual
processor appear in this sequence in the order specified by its program

Sequential consistency: Requirements

-Sequential consistency: Every load from a memory address would get its
value from the last store before it to the same address in global memory

L1 cache hit

i-TLB

L2 cache

L1
i-cache

Page
walker

MMU

Virtual
address

TLB miss

Registers

ALUCt
rl

un
it

Processor

data from L2 cache
(~10 cycles)

TLB hit (~1 cycle)

Main mem. access (~100 cycles)

L3 cache (local slice)

L3 miss: Look up data
in main mem.

data from L3 cache
(~40-60 cycles)

L1
d-cache

d-TLB

L1 miss: Look up
data on next level

L2 miss: Look up
data in next level

CPU core

physical
address

data from L1 cache
(~5 cycles)

L2 cache hit

L3 cache hit

 Look up the translation
index from main mem.

> Easy to reason / Impractically slow

- The effects of each instruction must be visible on
all cores before starting the next instruction

- The first level of "global" memory is the L3 cache
with an overhead of at least 40 cycles for access time

- In practice: We relax the memory consistency model
to hide store (write) latency and avoid processor stalls

"Problems" due to lack of synchronization
> Race conditions: A timing dependent error involving shared state
which occurs when the interleaving of execution of concurrent
operations leads to erroneous program behaviour

> Reasons for race conditions:
- Data races: Non-atomic, unsynchronized, concurrent operations, at

least one of which mutating shared state

- Semantic ordering errors: Code that does not enforce the order
programmers intended to for a group of memory accesses

- Weak memory consistency models: The set of allowed behaviours
w.r.t. memory operation is not what the programer expected

What is so hard about correct concurrent code?

> Concurrent progs have too many execution interlevings
- Too many ways something erroneous could happen
- Need to explore an enormous state space

> Correctness needs a definite and complete answer
- Inspected 100% of the state space ⇒ Can make an assessment
- Inspect 99.9% of the state space ⇒ Can't make any assessment

How many is "too many"?

- Correctness needs a definite and complete answer
- If we inspect 100% of the state space, we can make an assessment

- If we inspect 99.9% of the state space, the 0.1% makes us unhappy

- Hard to track all the feasible ways by which something
erroneous could happen: too many execution interleavings

Permutations of the word "MISSISSIPPI"
> We are counting permutations

- Let's do the exercise
> M-I-S-S-I-S-S-I-P-P-I
- Length: 11, M: 1, I: 4, S: 4, P: 2
- Distinct ways to permute a multiset of n elements, where ki is the

multiplicity of the ith element?
- Multinomial coefficient: (k1+k2+…+ kn)! / (k1!*k2!*...*kn!)
- Permutations of MISSISSIPPI = (11!) / (1!4!4!2!) = 34,650

How many is "too many"?
> Different schedules for four operations P1, P2, P3, and P4,
which run in total 11 time quanta; and where

- P1 runs 1 time
- P2 runs 4 times
- P3 runs 4 times
- P4 runs 2 times

> How many different scheduler plans do we need to inspect, to
cover the complete state space of possible interleavings? 34,650

* Trivial example in terms of no of operations
- We are not considering myriads of async events
- Yet's it's already too difficult

A few dedicates of state space exploration

> We' ve been searching for decades ways to reduce the size
of the state space of concurrent programs and test them

- Partial-Order Methods for the Verification of Concurrent
Systems, in 1995, by Patrice Godefroid.

- Model checking to find serious file system errors, in 2006, by
Junfeng Yang et al.

- RESTler: Stateful REST API Fuzzing, in 2019, by Atlidakis et al.

https://patricegodefroid.github.io/public_psfiles/thesis.pdf
https://patricegodefroid.github.io/public_psfiles/thesis.pdf
https://dl.acm.org/doi/abs/10.1145/1189256.1189259
https://vatlidak-org.github.io/web/assets/pdf/restler_icse.pdf

"Problems" due to lack of synchronization

> Race conditions: A timing dependent error involving shared state
which occurs when the interleaving of execution of concurrent
operations leads to erroneous program behaviour

> Reasons for race conditions:
- Data races: Non-atomic, unsynchronized concurrent accesses, at least

one of which mutating a shared variable

- Semantic ordering errors: Code that does not enforce the order
programmers intended to for a group of memory accesses

- Weak memory consistency models: The set of allowed behaviours
w.r.t. memory operations is not what the programer expected

"Problems" due to lack of synchronization

> Race conditions: A timing dependent error involving shared state
which occurs when the interleaving of execution of concurrent
operations leads to erroneous program behaviour

> Reasons for race conditions:
- Data races: Non-atomic, unsynchronized concurrent accesses, at least

one of which mutating a shared variable

- Semantic ordering errors: Code that does not enforce the order
programmers intended to for a group of memory accesses

- Weak memory consistency models: The set of allowed behaviours
w.r.t. memory operations is not what the programer expected

> A program contains a data race iif two or more threads
(1) access the same memory location concurrently
AND (2) at least one of these accesses is a write
AND (3) at least one of the accesses is not atomic
AND (4) neither happens before the other

Such data races may result in undefined program behaviors and may
lead to unforeseen errors at runtime

- See the ISO/IEC 9899:2011(C11), Sec.-5.1.2.4/25, on multi-threaded
executions and data races

Data races

https://www.iso-9899.info/n1570.html?utm_source=chatgpt.com

int total = 0;

void *add(void *arg) {

 for (int i = 0; i < 1e6; ++i)
 ++total;
 return NULL;
}

void main() {
 pthread_t t1, t2;

 pthread_create(&t1, NULL, add, (void *) NULL);
 pthread_create(&t2, NULL, add, (void *) NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf("Total-1: %d\n", total);

 total = 0;
 pthread_create(&t1, NULL, add, (void *) NULL);
 pthread_join(t1, NULL);
 pthread_create(&t2, NULL, add, (void *) NULL);
 pthread_join(t2, NULL);
 printf("Total-2: %d\n", total);
}

➜ git:(master) ✗ ./counter
Total-1: 1011367
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1011367
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1028085
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1011197
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1018502
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1013853
Total-2: 2000000

0000000000001159 <add>:

 1159: push %rbp # Save base pointer to stack
 115a: mov %rsp, %rbp # Set up new stack frame
 115d: mov %rdi, -0x18(%rbp) # *arg = %rdi
 1161: movl $0x0, -0x4(%rbp) # i = 0
 1168: jmp 117d <add+0x24> # for-loop start

 116a: mov 0x2ebc(%rip), %eax # %eax ← total
 1170: add $0x1, %eax # %eax += 1
 1173: mov %eax, 0x2eb3(%rip) # total ← %eax

 1179: addl $0x1, -0x4(%rbp) # i += 1
 117d: cmpl $0xf423f, -0x4(%rbp) # loop counter compare
 1184: jle 116a <add+0x11> # for-loop jump
 1186: mov $0x0, %eax # rval = %eax
 118b: pop rbp # Restore stack
 118c: ret # Return to caller

➜ obdjump -d ./counter

Data races

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

int total = 0;

void *add(void *arg) {

 for (int i = 0; i < 1e6; ++i)
 ++total;
 return NULL;
}

void main() {
 pthread_t t1, t2;

 pthread_create(&t1, NULL, add, (void *) NULL);
 pthread_create(&t2, NULL, add, (void *) NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf("Total-1: %d\n", total);

 total = 0;
 pthread_create(&t1, NULL, add, (void *) NULL);
 pthread_join(t1, NULL);
 pthread_create(&t2, NULL, add, (void *) NULL);
 pthread_join(t2, NULL);
 printf("Total-2: %d\n", total);
}

➜ git:(master) ✗ ./counter
Total-1: 1011367
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1011367
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1028085
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1011197
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1018502
Total-2: 2000000

➜ git:(master) ✗ ./counter
Total-1: 1013853
Total-2: 2000000

0000000000001159 <add>:

 1159: push %rbp # Save base pointer to stack
 115a: mov %rsp, %rbp # Set up new stack frame
 115d: mov %rdi, -0x18(%rbp) # *arg = %rdi
 1161: movl $0x0, -0x4(%rbp) # i = 0
 1168: jmp 117d <add+0x24> # for-loop start

 116a: mov 0x2ebc(%rip), %eax # %eax ← total
 1170: add $0x1, %eax # %eax += 1
 1173: mov %eax, 0x2eb3(%rip) # total ← %eax

 1179: addl $0x1, -0x4(%rbp) # i += 1
 117d: cmpl $0xf423f, -0x4(%rbp) # loop counter compare
 1184: jle 116a <add+0x11> # for-loop jump
 1186: mov $0x0, %eax # rval = %eax
 118b: pop rbp # Restore stack
 118c: ret # Return to caller

➜ obdjump -d ./counter

Data race!

Data races

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

> Two domains of state for each thread

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]
- Processor on thread B

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread B gets preemtped [shared value at main mem. +1]

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Thread B gets preemtped [shared value at main mem. +1]

Data races

OK
Interleaving

> Another execution interleaving
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]

Data races

> Another execution interleaving
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Another execution interleaving
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Processor on thread A
 - OS job: Load %reg with its value before ctx switch

Data races

> Another execution interleaving
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Processor on thread A
 - OS job: Load %reg with its value before ctx switch
 - Thead B "thinks" %reg ⇔ shared value at main mem.

Data races

> Another execution interleaving
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Processor on thread A
 - OS job: Load %reg with its value before ctx switch
 - Thead B "thinks" %reg ⇔ shared value at main mem.
 - But: shared value has been mutated by someone else

Data races

> Another execution interleaving
- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Processor on thread A
 - OS job: Load %reg with its value before ctx switch
 - Thead B "thinks" %reg ⇔ shared value at main mem.
 - But: shared value has been mutated by someone else

Data races

NOT OK
Interleaving

> Yet, another execution interleaving
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]
- Processor on thread A
 - OS job: Load %reg with its value before ctx switch
 - Thead B "thinks" %reg ⇔ shared value at main mem.
 - But: shared value has been mutated by someone else

Data races

NOT OK
Interleaving

> Bottom-line: Concurrent writes on shared state?
- Each thread must finish its business before it gets preempted

Data races

> Bottom-line: Concurrent writes on shared state?
- Each thread must finish its business before it gets preempted

- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Bottom-line: Concurrent writes on shared state?
- Each thread must finish its business before it gets preempted
- Inseperable "instructions"

- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

Data races

These instructions
are "inseperable"

These instructions
are "inseperable"

> Bottom-line: Concurrent writes on shared state?
- Each thread must finish its business before it gets preempted
- Inseperable "instructions" ⇒ Atomic operations

- Processor on thread A
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

- Processor on thread B
 - %reg <- value at main mem. [global vs. local state: consistent]
 - %reg <- %reg + 1 [global vs. local state: divergent]
 - value at main mem. <- %reg [global vs. local state: consistent]

Data races

These instructions
are "inseperable"

These instructions
are "inseperable"

