K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis
Lecture 08

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Overview

- We'll start from hardware and follow a question-oriented approach

- Synchronization [Q: What goes wrong w/o synchronization?]

- Time Management [Q: What is scheduling?]

- Memory Management [Q: What is virtual memory?]

- Files [Q: What is a file descriptor?]

- Storage Management [Q: How do we allocate disk space to files?]

Overview

- We'll start from hardware and follow a question-oriented approach

* Basic (H/W & S/W)
* Abstractions

* Primitives
* Mechanisms

— |- Synchronization [Q: What is synchronization?]
Time Management [Q: What is scheduling?]
Memory Management [Q: What is virtual memory?]

Files [Q: What is a file descriptor?]

Storage Management [Q: How do we allocate disk space to files?]

Necessary glossary to talk about synchronization

- Parallel operations: Operations that are happening at the same
time, on different processors

- Concurrent operations: Operations that are happening in overlapping
time intervals, on the same processor, seemingly simultaneously

- The order with which concurrent
operations are scheduled in for and out of execution

- Happens-before relationship?

What is synchronization?

Given two concurrent operations pl, p2 with a "dependency"
such that pl must always "happen before" p2,
synchronization mandates that t1(i) < 12(i) V i € [1, n],
where

t1(i) is the time when p1 ends its i-th execution

t2(i) it the time when p2 starts its i-th execution

> We have a problem in the above definition...

Necessary glossary to talk about synchronization

- Parallel operations: Operations that are happening at the same
time, on different processors

- Concurrent operations: Operations that are happening in

overlapping time intervals seemingly simultaneously
- The order with which concurrent
operations are scheduled in for and out of execution

- Happens-before relationship?

Departing from temporal ordering

> Temporal ordering: Arrangement of events in a sequence
according to physical time
- What most human understand when you talk about fimel

- Example: An airline reservation request will be granted if (i) it is made
before the flight is filled, and (ii) before the flight departs

> Ordering is not temporal on a multiprocessor (distributed) system

- Any conversation is in ferms of physical fime must be reexamined when
considering concurrent events in a distributed system
- Real clocks are =

"happens before” on distributed systems

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multiprocess
systems

CR Categories: 4.32, 5.29

Introduction

The concept of time is fundamental to our way of
thinking. It is derived from the more basic concept of
the order in which events occur. We say that something
happened at 3:15 if it occurred after our clock read 3:15
and before it read 3:16. The concept of the temporal
ordering of events pervades our thinking about systems.
For example, in an airline reservation system we specify
that a request for a reservation should be granted if it is
made before the flight is filled. However, we will see that
this concept must be carefully reexamined when consid-
ering events in a distributed system.

A distributed system consists of a collection of distinct
processes which are spatially separated, and which com-
municate with one another by exchanging messages. A
network of interconnected computers, such as the ARPA
net, is a distributed system. A single computer can also
be viewed as a distributed system in which the central
control unit, the memory units, and the input-output
channels are separate processes. A system is distributed
if the message tr ission delay is not negligible com-
pared to the time between events in a single process.

‘We will concern ourselves primarily with systems of
spatially separated computers. However, many of our
remarks will apply more generally. In particular, a mul-
tiprocessing system on a single computer involves prob-
lems similar to those of a distributed system because of
the unpredictable order in which certain events can
occur.

In a distributed system, it is sometimes impossible to
say that one of two events occurred first. The relation
“happened before” is therefore only a partial.erienng
of the events in the system. We have fousid that problems
often arise because people 2r<iiot fully aware of this fact
and its implications:

In.this"paper, we discuss the partial ordering defined
oy the “happened before™ relation, and give a distributed
algorithm for extending it to a consistent total ordering
of all the events. This algorithm can provide a useful
mechanism for implementing a distributed system. We
illustrate its use with a simple method for solving syn-

ization probl Unexpected lous behav-
ior can occur if the ordering obtained by this algorithm
differs from that perceived by the user. This can be
avoided by introducing real, physical clocks. We describe
a simple method for synchronizing these clocks, and
derive an upper bound on how far out of synchrony they
can drift.

The Partial Ordering

Most people would probably say that an event a
happened before an event b if @ happened at an earlier
time than 5. They might justify this definition in terms
of physical theories of time. However, if a system is to
meet a specification correctly, then that specification
must be given in terms of events observable within the

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

> Time, Clocks, and the Ordering of Events in a Distributed System, 1978, by Leslie Lamport

https://lamport.azurewebsites.net/pubs/time-clocks.pdf

Partial ordering of concurrent operations

> Logical clocks allows us to define a partial ordering of concurrent
operations on a multiprocessor system

> Synchronization is used to enforce that some partial order of concurrent
operations (i.e., some "happens-before" relationship) exists

Given two concurrent operations pl, p2
with a "dependency" such that pl must always "happen before" p2,
synchronization mandates that < 12(i) V i € [1, n], where

is the time when p! ends its i-th execution

12(i) is the time when p2 starts its i-th execution

Necessary glossary to talk about synchronization

- Parallel operations: Operations that are happening at the same
time, on different processors

- Concurrent operations: Operations that are happening in

overlapping time intervals seemingly simultaneously
- The order with which concurrent

operations are scheduled in for and out of execution

- Happens-before relationship: A partial ordering of concurrent
operations of a program

- Sequential consistency?

Reasoning about sequential consistency

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT

Abstract—Many large sequential computers execute operations in
a different order than is specified by the program. A correct execution
is achieved if the results produced are the same as would be produced
by executing the program steps in order. For a multiprocessor

computer, such a correct execution by each processor does not How to Make a Multiproccmor Computer That

guarantee the correct execution of the entire program. Additional

conditions are given which do guarantee that a computer correctly Co"ectly Executes Mu]tiprocess Progralm

executes multiprocess programs.

Index Terms—Computer design, concurrent computing, hardware

correctness, multiprocessing, parallel processing. LE SLI E LA M PORT

A high-speed processor may execute operations in a different
order than is specified by the program. The correctness of the
execution is guaranteed if the processor satisfies the following
condition: the result of an execution is the same as if the opera-
tions had been executed in the order specified by the program. A
processor satisfying this condition will be called sequential. Con-
sider a computer composed of several such processors accessing a
common memory. The customary approach to designing and
proving the correctness of multiprocess algorithms [1]-[3] for
such a computer assumes that the following condition is satisfied:
the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the

> How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs, 1977, by Leslie Lamport

https://lamport.azurewebsites.net/pubs/multi.pdf

Reasoning about sequential consistency

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

FESLIREAMPORT Abstract—Many large sequential computers execute operations in

d,«.ifzstract't—;dM.t;z la.rge se?ﬁu:::’hlt;ommem e;:(:cute :ﬂpentiot:in a different order thanis speciﬁed by the program. A correct execution
a ditierent order nis speci Y the program. A COrT execution . . .

i wéliloved i therowsits jeidncel sre ilic suans s woskl e produced is achieved if the results produced are the same as would be produced
by executing the program steps in order. Reeis multinzlrocessor by executing the program steps in order. For a multiprocessor
f;,':‘,‘,’.'.'_'tfe A8 oot Scwlien b e o Ad il computer, such a correct execution by each processor does not
conditions are given which do guarantee that a computercsirectly guarantee the correct execution of the entire program. Additional
£xecaics mukiprocess program conditions are given which do guarantee that a computer correctly

Index Terms—Computer design, concurrent computing, hardware executes multiprocess programs.
correctness, multiprocessing, parallel processing.

A high-speed processor may execute operations in a different . il ¢ :
order than is specified by the program. The correctness of the of each individual processor does not guarantee that the multi-
Spgfion s bhmscs] I e Diomon sl 1) (olomng processor computer is sequentially consistent. In this brief note,
condition: € result ol an execution 1s € same as I € opera- & i . .
tions had been executed in the order specified by the program. A we describe a method of interconnecting sequential processors
processor satisfying this condition will be called sequential. Con- : : : :
R WL 2 O YN Ve W with memory modules that insures the sequential consistency of
common memory. The customary approach to designing and the resu]ting mu]tiprocessor.

proving the correctness of multiprocess algorithms [1]-[3] for SR
such a computer assumes that the following condition is satisfied:
the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the

> How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs, 1977, by Leslie Lamport

https://lamport.azurewebsites.net/pubs/multi.pdf

Necessary glossary to talk about synchronization

- Parallel operations: Operations that are happening at the same time,
on different processors

- Concurrent operations: Operations that are happening in overlapping

time intervals seemingly simultaneously
- The order with which concurrent operations

are scheduled in for and out of execution

- Happens-before relationship: A partial ordering of concurrent
operations of a program

- Sequential consistency: The result of any execution of concurrent
operations is the same as if all operations on all processors were executed
in some sequential (global) order, and the operations of each individual
processor appear in this sequence in the order specified by its program

Necessary glossary to talk about synchronization

- Parallel operations: Operations that are happening at the same time,
on different processors

- Concurrent operations: Operations that are happening in overlapping

time intervals seemingly simultaneously
- The order with which concurrent operations

are scheduled in for and out of execution
- Happens-before relationship: A partial ordering of concurrent
operations of a program

- oequential consistency: |he result of any execution of concurrent
operations is the same as if all operations on all processors were executed
in some sequential (global) order, and the operations of each individual
processor appear in this sequence in the order specified by its program

Sequential consistency: Requirements

- Sequential consistency: Every load from a memory address would get its
value from the last store before it o the same address in global memory

CPU core MMU
Processor TLB miss
Pag -
=i r--= Look up the translation
|£ 11 ALU I * + index from main mem.
e Virtual
|"'.“‘ ddr‘ess TLB hit (~1 cycle)
______ physical
address
L1 cache hit
data from L1 cache
GRleess) L1 miss: Look up

L2 cache hit

(~10 cycles)

L3 cache hit

(~40-60 cycles)

Main mem. access (~100 cycles) {

- i _
-— |
data from L2 cache
_
data from L3 cache

data on next level

L2 miss: Look up
data in next level

L3 miss: Look up data
in main mem.

Easy to reason / Impractically slow

- The effects of each instruction must be visible on
all cores before starting the next instruction

- The first level of "global" memory is the L3 cache
with an overhead of at least 40 cycles for access time

- In practice: We relax the memory consistency model
to hide store (write) latency and avoid processor stalls

"Problems" due to lack of synchronization

> Race conditions: A timing dependent error involving shared state
which occurs when the interleaving of execution of concurrent
operations leads to erroneous program behaviour

> Reasons for race conditions:
- Non-atomic, unsynchronized, concurrent operations, at
least one of which mutating shared state
- Semantic ordering errors: Code that does not enforce the order
programmers intended to for a group of memory accesses

- Weak memory consistency models: The set of allowed behaviours
w.r.t. memory operation is not what the programer expected

What is so hard about correct concurrent code?

- Too many ways something erroneous could happen
- Need to explore an enormous state space

> Correctness needs a definite and complete answer
- Inspected 100% of the state space = Can make an assessment
- Inspect 99.9% of the state space = Can't make any assessment

How many is "tfoo many"?

- Correctness needs a definite and complete answer

- If we inspect 100% of the state space, we can make an assessment

- If we inspect 99.9% of the state space, the 0.1% makes us unhappy

- by which something
erroneous could happen: too many execution interleavings

Permutations of the word "MISSISSIPPI"

-Let's do the exercise
> I-5-5-I-5-5-I-P-P-1
- Length: 11, I:4,5:4,P:2
- Distinct ways o permute a multiset of n elements, where ki is the
multiplicity of the ith element?
- Multinomial coefficient: (kl1+k2+..+ kn)! / (k1*k2!*...*knl)
- Permutations of MISSISSIPPI = (111) / (11414121) = 34,650

How many is "too many'?

> Different schedules for four operations P1, P2, P3, and P4,

which run in total 11 time quanta; and where
- Plruns1time

- P3 runs 4 times
- P4 runs 2 times

> How many different scheduler plans do we need to inspect, to
cover the complete state space of possible interleavings? 34,650

* Trivial example in terms of no of operations
- We are not considering myriads of async events
- Yet's it's already too difficult

A few dedicates of state space exploration

> We' ve been searching for decades ways to reduce the size
of the state space of concurrent programs and test them

- Partial-Order Methods for the Verification of Concurrent
Systems, in 1995, by Patrice Godefroid.

- Model checking to find serious file system errors, in 2006, by
Junfeng Yang et al.

- RESTIer: Stateful REST APT Fuzzing, in 2019, by Atlidakis et al.

https://patricegodefroid.github.io/public_psfiles/thesis.pdf
https://patricegodefroid.github.io/public_psfiles/thesis.pdf
https://dl.acm.org/doi/abs/10.1145/1189256.1189259
https://vatlidak-org.github.io/web/assets/pdf/restler_icse.pdf

"Problems" due to lack of synchronization

> Race conditions: A timing dependent error involving shared state
which occurs when the interleaving of execution of concurrent
operations leads to erroneous program behaviour

> Reasons for race conditions:

- Non-atomic, unsynchronized concurrent accesses, at least
one of which mutating a shared variable

- Semantic ordering errors: Code that does not enforce the order
programmers intended to for a group of memory accesses

- Weak memory consistency models: The set of allowed behaviours
w.r.t. memory operations is not what the programer expected

"Problems" due to lack of synchronization

> Race conditions: A timing dependent error involving shared state
which occurs when the interleaving of execution of concurrent
operations leads to erroneous program behaviour

> Reasons for race conditions:

- Non-atomic, unsynchronized concurrent accesses, at least
one of which mutating a shared variable

- Semantic ordering errors: Code that does not enforce the order
programmers intended to for a group of memory accesses

- Weak memory consistency models: The set of allowed behaviours
w.r.t. memory operations is not what the programer expected

Data races

> A program contains a data race iif two or more threads
(1) access the same memory location concurrently

AND (3) at least one of the accesses is not atomic
AND (4) neither happens before the other

Such data races may result in undefined program behaviors and may
lead to unforeseen errors at runtime

- See the ISO/IEC 9899:2011(C11), Sec.-5.1.2.4/25, on multi-threaded
executions and data races

https://www.iso-9899.info/n1570.html?utm_source=chatgpt.com

int total = 0;
void *add(void *arg) {

for (inti=0;i < 1e6; ++i)
++total;
return NULL;

}

void main() {
pthread tt1,t2;

pthread create(&t1, NULL, add, (void *) NULL);
pthread create(&t2, NULL, add, (void *) NULL);
pthread join(t1, NULL);

pthread join(t2, NULL);

printf(" ", total);

total = 0;

pthread create(&t1, NULL, add, (void *) NULL);
pthread join(t1, NULL);

pthread create(&t2, NULL, add, (void *) NULL);
pthread join(t2, NULL);

printf(" ", total);

Data races

=>» obdjump -d ./counter

0000000000001159 <add>:

1159: push %rbp # Save base pointer to stack
115a: mov %rsp, %rbp # Set up new stack frame
115d: mov %rdi, -0x18(%rbp) # *arg = %rdi

1161: movl $0x0, -0x4(%rbp) #i=0

1168: jmp 117d <add+0x24> # for-loop start

116a: mov Ox2ebc(%rip), %eax # %eax « total

1170: add $0x1, %eax # %eax +=1

1173: mov %eax, 0x2eb3(%rip) # total — %eax

1179: addl $0x1, -0x4(%rbp) #i+=1

117d: cmpl $0xf423f, -0x4(%rbp) # loop counter compare
1184:jle 116a <add+0x11> # for-loop jump

1186: mov $0x0, %eax # rval = %eax

118b: pop rbp # Restore stack

118c: ret # Return to caller

- git:(master) X ./counter
Total-1: 1011367
Total-2: 2000000

-» git:(master) X ./counter
Total-1: 1011367
Total-2: 2000000

-» git:(master) X ./counter
Total-1: 1028085
Total-2: 2000000

- git:(master) X ./counter
Total-1: 1011197
Total-2: 2000000

=-» git:(master) X ./counter
Total-1: 1018502
Total-2: 2000000

-» git:(master) X ./counter
Total-1: 1013853
Total-2: 2000000

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

Data races

int total = 0;
void *add(void *arg) {
for (inti=0;i< 1e6; ++i)
++total;
return NULL;

}

void main() {
pthread tt1,t2;

pthread create(&t1, NULL, add, (void *)
pthread create(&t2, NULL, add, (void *) NULL
pthread join(t1, NULL);

116a:
1170:

=>» obdjump -d ./counter

0000000000001159 <add>:

1159:
115a:
115d:
1161:
1168:

push %rbp # Save base pointer to stack
mov %rsp, %rbp # Set up new stack frame
mov %rdi, -0x18(%rbp) # *arg = %rdi

movl $0x0, -0x4(%rbp) #i=0

jmp 117d <add+0x24> # for-loop start

Data race!
mov 0x2ebc(%rip), %eax # %eax « total

add $0x1, Y%eax # %eax +=1

pthread join(t2, NULL); 1173: mov %eax, 0x2eb3(%rip) # total — %eax
printf(" ", total);

1179: addl $0x1, -0x4(%rbp) #i+=1
total = 0; . 117d: cmpl $0xf423f, -0x4(%rbp) # loop counter compare
pthread create(&t1, NULL, add, (void *) NULL); 1184- i 116a <add+0x11> 4 for- .
pthread join(t1, NULL); -Jie a=<a & OE.OOPILIID
pthread create(&t2, NULL, add, (void *) NULL); 1186: mov $0x0, %eax # rval = %eax
pthread join(t2, NULL); 118b: pop rbp # Restore stack
printf(" ", total); 118c: ret # Return to caller

- git:(master) X ./counter
Total-1: 1011367
Total-2: 2000000

-» git:(master) X ./counter
Total-1: 1011367
Total-2: 2000000

-» git:(master) X ./counter
Total-1: 1028085
Total-2: 2000000

- git:(master) X ./counter
Total-1: 1011197
Total-2: 2000000

=-» git:(master) X ./counter
Total-1: 1018502
Total-2: 2000000

-» git:(master) X ./counter
Total-1: 1013853
Total-2: 2000000

https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init
https://elixir.bootlin.com/linux/v6.17-rc3/C/ident/vma_numab_state_init

Data races

> Two domains of state for each thread

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)

- Processor on thread A
- 7oreg <- value at main mem. [global vs. local state: consistent]

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)

- Processor on thread A
- 7oreg <- value at main mem. [global vs. local state: consistent]
- %oreg <- %reg + 1 [global vs. local state: divergent]

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]
- Joreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A

- 7oreg <- value at main mem. [global vs. local state: consistent]
- %oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Thread A gets preemtped [shared value at main mem. +1]

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)
- Processor on thread A

- 7oreg <- value at main mem. [global vs. local state: consistent]
- %oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Thread A gets preemtped [shared value at main mem. +1]
- Processor on thread B

Data races

> Two domains of state for each thread
- Processor regs (per-thread, local state) vs. Main memory (global state)

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]
- %oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Thread A gets preemtped [shared value at main mem. +1]

- Processor on thread B
- %reg <- value at main mem. [global vs. local state: consistent]

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]
- %oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]

- Processor on thread B
- %reg <- value at main mem. [global vs. local state: consistent]
- J%oreg <- %reg + 1 [global vs. local state: divergent]

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]
- %oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]
- Thread A gets preemtped [shared value at main mem. +1]

- Processor on thread B
- %reg <- value at main mem. [global vs. local state: consistent]
- J%oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]
- %oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Thread A gets preemtped [shared value at main mem. +1]
- Processor on thread B
- %reg <- value at main mem. [global vs. local state: consistent]

- J%oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Thread B gets preemtped [shared value at main mem. +1]

Data races

> Two domains of state for each thread

- Processor regs (per-thread, local state) vs. Main memory (global state)

- Processor on thread A 3
- %reg <- value at main mem. [global vs. local state: consistent]
- %oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Thread A gets preemtped [shared value at main mem. +1] OK
- Processor on thread B ~ Interleaving
- %reg <- value at main mem. [global vs. local state: consistent]

- J%oreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Thread B gets preemtped [shared value at main mem. +1]

Data races

> Another execution interleaving

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]

Data races

> Another execution interleaving

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]

- Processor on thread B
- %reg <- value at main mem. [global vs. local state: consistent]
- Joreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Another execution interleaving

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]

- Processor on thread B
- %reg <- value at main mem. [global vs. local state: consistent]
- Joreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %req [global vs. local state: consistent]

- Processor on thread A
- OS job: Load 7%reg with its value before ctx switch

Data races

> Another execution interleaving

- Processor on thread A

- %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B

- %reg <- value at main mem. [global vs. local state: consistent]

- Joreg <- %reg + 1 [global vs. local state: divergent]

- value at main mem. <- %reg [global vs. local state: consistent]
- Processor on thread A

- OS job: Load 7%reg with its value before ctx switch

- Thead B "thinks" %reg < shared value at main mem.

Data races

> Another execution interleaving

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]

- Processor on thread B

- %reg <- value at main mem. [global vs. local state: consistent]

- Joreg <- %reg + 1 [global vs. local state: divergent]

- value at main mem. <- %req [global vs. local state: consistent]
- Processor on thread A

- OS job: Load 7%reg with its value before ctx switch

- Thead B "thinks" %reg < shared value at main mem.

- But: shared value has been mutated by someone else

Data races

> Another execution interleaving

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B
- %reg <- value at main mem. [global vs. local state: consistent]
- Joreg <- %reg + 1 [global vs. local state: divergent] NOT OK
- value at main mem. <- %req [global vs. local state: consistent] ~ Interleaving
- Processor on thread A
- OS job: Load 7%reg with its value before ctx switch
- Thead B "thinks" %reg ¢ shared value at main mem.
- But: shared value has been mutated by someone else

Data races

> Yet, another execution interleaving

- Processor on thread B
- %reg <- value at main mem. [global vs. local state: consistent]
- Processor on thread B
- %oreg <- value at main mem. [global vs. local state: consistent]
- Joreg <- %reg + 1 [global vs. local state: divergent] NOT OK
- value at main mem. <- %reg [global vs. local state: consistent] ~ Interleaving
- Processor on thread A
- OS job: Load 7%reg with its value before ctx switch
- Thead B "thinks" %reg < shared value at main mem.
- But: shared value has been mutated by someone else

Data races

> Bottom-line: Concurrent writes on shared state?
- Each thread must finish its business before it gets preempted

Data races

> Bottom-line: Concurrent writes on shared state?
- Each thread must finish its business before it gets preempted

- Processor on thread A
- %reg <- value at main mem. [global vs. local state: consistent]
- Joreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Processor on thread B
- Joreg <- value at main mem. [global vs. local state: consistent]
- %reg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Bottom-line: Concurrent writes on shared state?
- Each thread must finish its business before it gets preempted

- Processor on thread A

- %reg <- value at main mem. [global vs. local state: consistent]
- Joreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Processor on thread B

- Joreg <- value at main mem. [global vs. local state: consistent]
- %reg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

Data races

> Bottom-line: Concurrent writes on shared state?

- Each thread must finish its business before it gets preempted
- =

- Processor on thread A

- %reg <- value at main mem. [global vs. local state: consistent]
- Joreg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

- Processor on thread B

- Joreg <- value at main mem. [global vs. local state: consistent]
- %reg <- %reg + 1 [global vs. local state: divergent]
- value at main mem. <- %reg [global vs. local state: consistent]

