K22 - Operating Systems:
Design Principles and Internals

Fall 2025 @dit

Vaggelis Atlidakis
Lecture 20

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating
System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Overview

- We'll start from hardware and follow a question-oriented approach

* Basic (H/W & S/W)
* Abstractions

* Primitives

* Mechanisms

- Storage Management [Q: How do we allocate disk space to files?]

Overview

- Storage
- Q1: Allocating storage space to files?
- Q2: File system layout?
- Q3: Files and directory names?
- Q4: Path name resolution?
- Q5: Linux file system data structures?
- Q6: Achieving crash tolerance?
- Q7: Achieving fault tolerance?

Allocating storage space to files

Allocating storage space to files

> Files are just an abstraction => Need actual
for the data akin to how virtual memory needs

Allocating storage space to files
> Files are just an abstraction => Need actual
for the data akin to how virtual memory needs

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...

Allocating storage space to files
> Files are just an abstraction => Need actual
for the data akin to how virtual memory needs

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...

Allocating storage space to files

> Files are just an abstraction => Need actual
for the data akin to how virtual memory needs

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...

> Faster and more reliable than HDD

Allocating storage space to files
> Files are just an abstraction => Need actual
for the data akin to how virtual memory needs

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...

> Faster and more reliable than HDD
> Still quite slow, compared to main memory

Allocating storage space to files

> Files are just an abstraction => Need actual
for the data akin to how virtual memory needs

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...

> Faster and more reliable than HDD
> Still quite slow, compared to main memory
- Be proactive => Prefetch data (leverage spatial locality)

Allocating storage space to files

> Files are just an abstraction => Need actual
for the data akin to how virtual memory needs

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...

> Faster and more reliable than HDD
> Still quite slow, compared to main memory
- Be proactive => Prefetch data (leverage spatial locality)
- Hide latency => Do slow storage operations asynchronously

Calculating major vs minor page fault latency

int main(int argc, char **argv) {
// Assuming file already exists at path
if ((fd = open(" ", O_RDONLY, 0664)) < 0)
return -1;
char *buf = mmap(NULL, page_size, PROT_READ, MAP_PRIVATE, fd, 0):
start_time = clock_gettime_ns();
char a = buf[0];
end_time = clock_getftime_ns();
printf(" end_time - start_time);
start_time = clock_gettime_ns();
char a = buf[0];
end_time = clock_gettime_ns();
printf(" end_time - start_time);
}

1 -> Drop in-kernel page caches
- giti(master) X echo 1 | sudo tee /proc/sys/vm/drop_caches
1

- git:(master) X ./demo

Time elapsed: 448,834 ns (1-st read) <-- Major page fault / Going to strorage
Time elapsed: 41 ns (2-nd read)

- git:(master) X ./demo

Time elapsed: 11,041 ns (1-st read) <-- Minor page fault / Staying in main mem.
Time elapsed: 42 ns (2-nd read)

Allocating storage space to files

How do we allocate to files?
> Systems people are very predictable...

Allocating storage space to files

How do we allocate to files?
> Systems people are very predictable...
> Split storage to fixed-size chucks, called blocks

Allocating storage space to files

How do we allocate to files?
> Systems people are very predictable...
> Split storage to fixed-size chucks, called blocks

> Use n blocks to serve a file, where n = filesize / blocksize
> Allocation strategies

Allocating storage space to files

How do we allocate to files?
> Systems people are very predictable...

> Split storage to fixed-size chucks, called blocks

> Use n blocks to serve a file, where n = filesize / blocksize

> Allocation strategies
Contiguous allocation

Linked allocation

Indexed allocation
Multi-level indexed allocation

Allocating storage space to files

How do we allocate to files?
> Systems people are very predictable...

> Split storage to fixed-size chucks, called blocks

> Use n blocks to serve a file, where n = filesize / blocksize

> Allocation strategies
Contiguous allocation

Linked allocation

Indexed allocation
Multi-level indexed allocation

Contiguous allocation

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks

Contiguous allocation

Allocate a contiguous set of blocks, of sufficient size to each file

- File metadata: Starting block and no of blocks

A
R

count
o] 1] 2] 3[]
f
4[] s[] e[] 7[]
8] o[J1o[J11[]
tr
12[113[J14[J15[]
16[]17[J18[]19[]
mail
20[]21[J22[J23[]
24[J25[Je6[127[]

list

28[]29[130[131[]

directory

file start length

count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

R

Image from: OS Concepts, by A. Silberschatz et al.

Contiguous allocation

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks

A
B
> count
Aivanffges oo T il o] 1] 2 3] directory
- Low sTorage overnead => |wo vars per Tile f
g9 P a[] s[] e[] 7[] fle start length

- Fast sequential access => Consecutive blocks
s[] o[J10[J11[1 CHTE

- Quick calculation of blocks for random accesses tr tr 14 3
1213141150] mail 19 6
list 28 4
16[]17[J18[]19[] ¢ 6 >
il
20[_]21 Er]ngé[lzslj
24[J25[Je6[127[]
list
28[129[]30[131[]
N

Image from: OS Concepts, by A. Silberschatz et al.

Contiguous allocation

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks

A
B
> count
Acivan’rsgeS oo T il o] 1] 2 3] directory
- Low sTorage overnead => |wo vars per Tile f
9 P a[] s[] e[] 7[] fle start length

- Fast sequential access => Consecutive blocks
s[] o[J10[J11[1 CHTE

- Quick calculation of blocks for random accesses tr tr 14 3
. 12[J13[J14[]J15[] mail 19 6
> Disadvantages eeoineem| | ®
- Difficult to grow a file mail
Difficult to g fil o e : 2=
20 |21 _[22] 123
- External fragmentation
24[125 J26[]27[]
list
28[]29[130[131[]
‘_/

Image from: OS Concepts, by A. Silberschatz et al.

Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

P N directory
e file start end
jeep 9 25
o[1@ 2 3

8[]
12[J13[J14[115
16[J17[J18[J19[]
20[]212[]23[]
24[J25[F126[]27[]
28[J29[130[]31[]
e

Image from: OS Concepts, by A. Silberschatz et al.

o[110[2]11[]

Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

P N directory
v file start end
i 9 25
> Advantages o] 10 20 303 ik

- No fragmentation 4] 5161 700

- Files can easily grow dynamically 8[] prilto2110]
12[13114 115]

16[J17[118[J19[]
20[]212[]23[]
24[]25F1[26[27
28[]29[]30[]31[]
e

Image from: OS Concepts, by A. Silberschatz et al.

Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

P N directory
e il file start end
j 9 25
> Advantages o) 1 200 01| L

- No fragmentation 40 51601 707
- Files can easily grow dynamically 8] plil10[211[]

> Disadvantages
- Slow on random accesses

12 J13[114[115
16[J17[J18[J19[]
20[]212[]23[]
24[J25[F126[]27[]
28[J29[130[]31[]
e

Image from: OS Concepts, by A. Silberschatz et al.

Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

P N directory
e il file start end
j 9 25
> Advantages o) 1 200 01| L

- No fragmentation 40 501 60 70
- Files can easily grow dynamically 8] plil10[211[]

> Disadvantages 1213 14[115

16[J17[J18[]19[]

- Slow on random accesses
St head => O t block R /e
- orage overhead => One ptr per bloc T a—
28 D29|:]30E]31 |:|
_/

Image from: OS Concepts, by A. Silberschatz et al.

Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block:; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

P N directory
e il file start end
j 9 25
> Advantages o) 1 200 01| L

- No fragmentation 40 501 60 70
- Files can easily grow dynamically 8] plil10[211[]

> Disadvantages
- Slow on random accesses

O [J23[]
- Storage overhead => One ptr per block N 212 -

) < ©) 242526127]
- "Unoptimizable:" Index cannot be cached 2820130 J31]

N

Image from: OS Concepts, by A. Silberschatz et al.

12)13 114/ 115
16[J17[J18[]19[]

Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block:; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

P N directory
e il file start end
j 9 25
> Advantages o) 1 200 01| L

- No fragmentation 40 51601 707
- Files can easily grow dynamically 8] plil10[211[]

> Disadvantages
- Slow on random accesses

O [J23[]
- Storage overhead => One ptr per block N 212 -

) < ©) 242526127]
- "Unoptimizable:" Index cannot be cached 2820130 J31]

- Unreliable: Loose one block => loose everything N

Image from: OS Concepts, by A. Silberschatz et al.

12)13 114/ 115
16[J17[J18[]19[]

Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

P TN directory
| file index block

o 1EL\2IZI 3] Joek I
4[] 5[] 7]
8] o[J1o[N11[]
12[13141

16 18[]

20[J21[]22[423
24[J25[J26[127[]

28[]29[J30[131[]
- >

Image from: OS Concepts, by A. Silberschatz et al.

Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access

Y
|

oD1ﬂfD3D
4[] s[] 7]
8] o[J1o[N11[]
12[13141

directory

file
jeep

index block
19
1

16 18[]
20[J21[]22[423

2425261271

28[]29[J30[131[]
- >

Image from: OS Concepts, by A. Silberschatz et al.

Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How?)

Y
|

oD1ﬂfD3D
4[] s[] 7]
8] o[J1o[N11[]
12[13141

directory

file
jeep

index block
19
1

16 18[]
20[J21[]22[423

2425261271

28[]29[J30[131[]
- >

Image from: OS Concepts, by A. Silberschatz et al.

Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How? Cache inodes)

Y
|

oD1ﬂfD3D
4[] s[] 7]
8] o[J1o[N11[]
12[13141

directory

file
jeep

index block
19
1

16 18[]
20[J21[]22[423

2425261271

28[]29[J30[131[]
- >

Image from: OS Concepts, by A. Silberschatz et al.

Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

d P N directory
> A vanTageS) | - file index block
- No fragmentation o] 1I:L\2IZI 3] [1?’
- Files can easily grow dynamically 40 s0J 601 701
- Fast random access (How? Cache inodes) 8] olJ10[110]
> Disadvantages RIS
16 18[]

- Sequential bandwidth may not be good
- What if one index block is not big enough?

20[J21[]22[423
2425 f26[127

28[]29[J30[131[]
- >

Image from: OS Concepts, by A. Silberschatz et al.

Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

d P N directory
> A vanTageS) | - file index block
- No fragmentation o] 1EL\2IZI 3] [1?
- Files can easily grow dynamically 40 s0J 601 701
- Fast random access (How? Cache inodes) 8] olJ10[110]
> Disadvantages RIS
16 18[]

- Sequential bandwidth may not be good
- What if one index block is not big enough?

..We've seen this story beforel

20[J21[]22[423
2425 f26[127

28[]29[J30[131[]
- >

Image from: OS Concepts, by A. Silberschatz et al.

Multilevel Indexed allocation (Linux ext2/3)

Multilevel Indexed allocation (Linux ext2/3)

direct blocks

BLKSIZE/4
Indirect
Blocks
Indirect
(BLKSIZE/4)2 Blocks
Indirect
Blocks
(BLKSIZE/4)3 Indirect
Blocks

Triple
Indirect

Indirect
Blocks

Image from: COMS 4118, Operating Systems I

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

direct blocks

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer

- 1 triple indirect block pointer

BLKSIZE/4

Indirect
Blocks

Indirect
Blocks

Indirect
Blocks
Indirect
Blocks

(BLKSIZE/4

(BLKSIZE/4)3
Triple
Indirect
Indirect
Blocks

Image from: COMS 4118, Operating Systems I

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

direct blocks

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer

- 1 triple indirect block pointer

BLKSIZE/4

Indirect
Blocks

Indirect
Blocks

Indirect
Blocks
Indirect
Blocks

(BLKSIZE/4

What is the max supported file size?

(BLKSIZE/4)3
Triple
Indirect
Indirect
Blocks

Image from: COMS 4118, Operating Systems I

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

direct blocks

BLKSIZE/4
Indirect
Blocks
Indirect
(BLKSIZE/4 Blocks

(BLKSIZE/4)3

Triple
Indirect

Indirect
Blocks
Indirect
Blocks
Indirect
Blocks

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer

- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024"2 + 1024"3) *4KB > 4TB

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

direct blocks

BLKSIZE/4
Indirect
Blocks
Indirect
(BLKSIZE/4 Blocks

(BLKSIZE/4)3

Triple
Indirect

Indirect
Blocks
Indirect
Blocks
Indirect
Blocks

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer

- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024"2 + 1024"3) *4KB > 4TB

And for what index size?

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

direct blocks

BLKSIZE/4
Indirect
Blocks
Indirect
(BLKSIZE/4 Blocks

(BLKSIZE/4)3

Triple
Indirect

Indirect
Blocks
Indirect
Blocks
Indirect
Blocks

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer

- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024"2 + 1024"3) *4KB > 4TB

And for what index size?
> 12 + (1 + 1024 + 1024°2) * 4KB ~ 4GB

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

direct blocks

BLKSIZE/4

Indirect
Blocks

(BLKSIZE/4

Indirect
Blocks

(BLKSIZE/4)3

Triple
Indirect

Indirect
Blocks
Indirect
Blocks
Indirect
Blocks

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer

- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024"2 + 1024"3) *4KB > 4TB

And for what index size?
> 12 + (1 + 1024 + 1024°2) * 4KB ~ 4GB

Index grows dynamically, on demand...

https://cs4118.github.io/www/2024-1/

Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer
S | 10 the inode of root dir "/")

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315

Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer _
S | to the inode of root dir "/") - Bitmap blocks (data)

. Bitmap blocks (inodes)

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315

Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer _
S | to the inode of root dir " /") - Bitmap blocks (data) . Data blocks (free)

. Bitmap blocks (inodes) - Inodes’ blocks

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315

Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer _
S | to the inode of root dir " /") - Bitmap blocks (data) . Data blocks (free)

. Bitmap blocks (inodes) - Inodes’ blocks Data blocks (allocated)

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315

File and Directory Names

File and Directory Names

> Humans do not refer to files and directories via humbers, but
via file names and directory names (similarly to how programs refer to
via virtual addresses)

File and Directory Names

> Humans do not refer to files and directories via humbers, but
via file names and directory names (similarly to how programs refer to
via virtual addresses)

- Files and dirs are organized on an acyclic-graph hierarchy

File and Directory Names

> Humans do not refer to files and directories via numbers, but

via file names and directory names (similarly to how programs refer to
via virtual addresses)

- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it

File and Directory Names

> Humans do not refer to files and directories via numbers, but

via file names and directory names (similarly to how programs refer to
via virtual addresses)

- Files and dirs are organized on an acyclic-graph hierarchy

- Special "/" root directory: All names are paths starting it
- "/foo/test.txt" => "/" -> "foo" -> "test txt"

File and Directory Names

> Humans do not refer to files and directories via numbers, but

via file names and directory names (similarly to how programs refer to
via virtual addresses)

- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it

- "/foo/test.txt" => "/" -> "foo" -> "test txt"
- "/foo/bar/test.txt" =>"/" -> "foo" -> "bar" -> "test.txt"

File and Directory Names

> Humans do not refer to files and directories via numbers, but

via file names and directory names (similarly to how programs refer to
via virtual addresses)

- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it

- "/foo/test.txt" => "/" -> "foo" -> "test txt"
- "/foo/bar/test.txt" =>"/" -> "foo" -> "bar" -> "test.txt"

File and directory aliases

File and Directory Names

> Humans do not refer to files and directories via numbers, but

via file names and directory names (similarly to how programs refer to
via virtual addresses)

- Files and dirs are organized on an acyclic-graph hierarchy

- Special "/" root directory: All names are paths starting it
- "/foo/test.txt" => "/" ->"foo" -> "fest.txt"
- "/foo/bar/test.txt" =>"/" ->"foo" -> "bar" -> "test.txt"

File and directory aliases
> Hard link: Associates a name with an inode (>=1 files, =1 dirs)

File and Directory Names

> Humans do not refer to files and directories via numbers, but
via file names and directory names (similarly to how programs refer to
via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it
- "/foo/test.txt" => "/" ->"foo" -> "test.txt"
- "/foo/bar/test.txt" =>"/" -> "foo" -> "bar" -> "test.txt"
File and directory aliases
> Hard link: Associates a name with an inode (>=1 files, =1 dirs)
> Soft link: Associates a name with an inode of a file containing paths to files

Path Name Resolution

Path Name Resolution

We need a fast translation from path names to

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)
Example: "/foo/test.txt" =>"/" -> "foo" -> "fest.txt"

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "fest.txt"
1. Read superblock to look up inode no of “/*

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "fest.txt"
1. Read superblock to look up inode no of “/*

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "test. txt"
1. Read superblock to look up inode no of “/*

3. Read data block of “/" to look up inode no of "/foo"

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "fest.txt"
1. Read superblock to look up inode no of “/*

3. Read data block of “/" to look up inode no of "/foo"

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "test. txt"
1. Read superblock to look up inode no of “/*

3. Read data block of “/" to look up inode no of "/foo"

5. Read data block of "/foo" to look up inode number of "/foo/test.txt"

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "test. txt"
1. Read superblock to look up inode no of “/*

3. Read data block of “/" to look up inode no of "/foo"

5. Read data block of "/foo" to look up inode number of "/foo/test.txt"

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "test. txt"
1. Read superblock to look up inode no of “/*

3. Read data block of “/" to look up inode no of "/foo"
5. Read data block of "/foo" to look up inode number of "/foo/test.txt"

7. Read data blocks of "foo/test.txt"

Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "test. txt"
1. Read superblock to look up inode no of “/*

3. Read data block of “/" to look up inode no of "/foo"

5. Read data block of "/foo" to look up inode number of "/foo/test.txt"

7. Read data blocks of "foo/test.txt"
Need to speed this up

Linux File System Data Structures

Linux File System Data Structures

Per-process

fd table

fd=0
fd=1
fd=2
fd=3

Storage

255

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26

Linux File System Data Structures

Global table of open
files w/ struct file

Per-process

fd table Storage
fd=0 f _inode
fd=1 f _path
fd=2 dentry
fd=3 — mnt
— f flags
255

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094

Linux File System Data Structures

Global path transiation caches
Global table of open

|
|
|
files w/ struct file :
I i_size
|

= struct inode
| i_ma_pping

Per-process

fd table Storage
fd=0 f inode — .
fd=1 f path dd_flé\gst
fd=2 / dentry . Epz;:: struct dentry
fd=3 mnt d _inode
E— f flags
255

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094
https://elixir.bootlin.com/linux/v6.14/source/include/linux/dcache.h#L91
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L671

Linux File System Data Structures

Global path transiation caches
Global table of open

|
|
|
files w/ struct file :
|
1

i size

Per-process T struct inode
fd table | (Emapping | Storage
fd=0 f inode |- ! L -
fd=1 f path : d flags cruct dent
fd=2 dentry — | nane STrUCT centry
fd=3 / mnt | d inode
R f flags :
|
255 !
|
l Global data cache
| for file-backed pages
|
|
1
I
|
I
|
|

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094
https://elixir.bootlin.com/linux/v6.14/source/include/linux/dcache.h#L91
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L671

Linux File System Data Structures

Global path transiation caches
Global table of open

|
|
|
files w/ struct file :
|
|

i_size

Most file-related
syscalls read and
write from/to here,
unless fsync'ed

Per-process T struct inode
fd table | (Emapping | Storage
£d=0 f inode |- I . —
fd=1 f_path : d_flags cruct dent
fd=2 dentry — | 2 nane siruct deniry
fd=3 / mnt | d inode
R f flags :
|
255 !
|
l Global data cache
| for file-backed pages
|
|
|
I
|
I
|
|

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094
https://elixir.bootlin.com/linux/v6.14/source/include/linux/dcache.h#L91
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L671

Linux File System Data Structures

Global path transiation caches
Global table of open

|
|
|
files w/ struct file :
|
1

i size

Most file-related
syscalls read and
write from/to here,
unless fsync'ed

Per-process T struct inode
' d Table | i mapping S-l—or.age
fd=0 f_inode |- ! o -
fd=1 f path : dd_fl.agst . - domt
fa=2 dentry — | —gras struct dentry
fd=3 / mnt 1 d _inode
e f_flags | Regular virtual
— ! memory pages
255 |
1
! Global data cache
' for file-backed pages
|
I
|
|
|
|
|
I

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094
https://elixir.bootlin.com/linux/v6.14/source/include/linux/dcache.h#L91
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L671

The consistent update problem

The consistent update problem

_how to ensure that
updates to the file system (fs) occur atomically?

The consistent update problem

_how to ensure that
updates fo the file system (fs) occur atomically?

> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)

The consistent update problem

_how to ensure that
updates fo the file system (fs) occur atomically?

> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)

> Storage devices allow at a tfime

The consistent update problem

_how to ensure that
updates fo the file system (fs) occur atomically?

> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)

> Storage devices allow at a tfime
> Crashes may happen at any time leaving the fs inconsistent

The consistent update problem

_how to ensure that
updates to the file system (fs) occur atomically?

> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)

> Storage devices allow at a tfime
> Crashes may happen at any time leaving the fs inconsistent

Update data | Update data bitmap | Update inode Outcome
yes no no
no yes no
no no yes

The consistent update problem

_how to ensure that
updates to the file system (fs) occur atomically?

> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)

> Storage devices allow at a tfime
> Crashes may happen at any time leaving the fs inconsistent

Update data | Update data bitmap | Update inode Outcome
yes no no Missed update
no yes no Space leak
no no yes fs inconsistent

The consistent update problem

_how to ensure that
updates to the file system (fs) occur atomically?

> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)

> Storage devices allow at a tfime
> Crashes may happen at any time leaving the fs inconsistent

Update data | Update data bitmap | Update inode Outcome
yes no no Missed update
no yes no Space leak
: : Could read garbage
no no yes fs inconsistent data—Example?

Ordered Writes

_how to ensure that
updates to the file system (fs) occur atomically?

> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order

Ordered Writes

_how to ensure that
updates fo the file system (fs) occur atomically?

> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

Ordered Writes

. how to ensure that

updates fo the file system (fs) occur atomically?

> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized datal

Ordered Writes

_how to ensure that
updates fo the file system (fs) occur atomically?

> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized datal
- Can leak resources

Ordered Writes

_how to ensure that
updates fo the file system (fs) occur atomically?

> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized datal
- Can leak resources (fixable: run fsck periodically)

Ordered Writes

_how to ensure that
updates fo the file system (fs) occur atomically?

> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized datal
- Can leak resources (fixable: run fsck periodically)
- Cannot reorder writes and execute asynchronously <= Dealbreaker

Journaling (also called "write-ahead" logging)

Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block

inode | data bitmap inode data bitmap inode data bitmap
Startl " bk | blk | Endl(Start2 o7 o | End2 StartN "o bk | blk

- _/ - _/ - _/
~

Tx1 Tx2 TxN

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block
Write TxN's End block to the journal

inode | data bitmap Endl Start2 inode data bitmap End2 ~ | StartN inode data bitmap

Startl "o bk | blk bk blk bk bk bk blk

- _/ - _/ - _J
~

Tx1 Tx2 TxN

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block
Write TxN's End block to the journal

ITT) Journal Checkpoint: After data and metadata blks have been updated at
their final storage destination, update ckpt postion

inode | data bitmap Endl Start2 inode data bitmap End2 inode data bitmap

Startl "o bk | blk blk bk blk StartN "o bk | blk

- _/ - _/ - _J
~

Tx1 Tx2 TxN

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block
Write TxN's End block to the journal

ITT) Journal Checkpoint: After data and metadata blks have been updated at
their final storage destination, update ckpt postion

¢ Checkpoint position Last committed Tx

inode | data bitmap Endl Start2 inode data bitmap End2 inode data bitmap

Startl "o bk | blk blk bk blk StartN "o bk | blk

- _/ - _/ - _J
~

Tx1 Tx2 TxN

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block
Write TxN's End block to the journal

ITT) Journal Checkpoint: After data and metadata blks have been updated at
their final storage destination, update ckpt postion

Crash occured? Replaying committed transactions after the last checkpoint will
bring the fs to a consistent state (crash tolerance)

¢ Checkpoint position Last committed Tx

inode | data bitmap End1

inode data bitmap inode data bitmap
blk | blk blk End2

Startl blk bk blk StartN "o bk | blk

Start2

- _/ - _/ - _J
~

Tx1 Tx2 TxN (incomplete)

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> Storage failures are irreversible => No restart button

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> Storage failures are irreversible => No restart button

Computer hard drive read/write head

power port

data cable port

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> Storage failures are irreversible => No restart button

Computer hard drive read/write head

power port

data cable port

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware?

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware? Replication

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

RAID-1 (disks »>= 2) RAID-0 (disks »>= 2)
- e > >
AL | LA _ Al | [(_A2 J
A2 (A2 = =
A3 | (A3 (_A5 | |_A6 2x Throughput
e RS LS Eai * No Fault tolerance
> Worse than single disk
S _J N —_——
Disk0 Disk 1 Disk 0 Disk 1 ’

Images from: Wikipedia

https://en.wikipedia.org/wiki/Standard_RAID_levels

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

RAID-4 (disks »>= 3)
T D dy @

lr W wWir W
Bl | | _B2 _B3 | |_Bp |
el el el e
D1 | |_D2 \D3;[Dp:

_/QQV

Disk 0 Disk 1 Disk 2 Disk 3

Images from: Wikipedia

https://en.wikipedia.org/wiki/Standard_RAID_levels

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

Fault Tolerance

> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

RAID-4 (disks »>= 3)

Disk 0

Disk 1

Disk 2

RAID-5 (disks >= 3)

Disk 3

Disk 0

o

B2 |
L Cp
D1 |

—_/
Disk 1

Disk 2

Disk 3

Images from: Wikipedia

https://en.wikipedia.org/wiki/Standard_RAID_levels

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

RAID-4 (disks »>= 3)

Disk 0

Disk 1

Disk 2

RAID-5 (disks >= 3)

o

. Bl |
. C1
. Dp |

Disk 3

———
Disk 0

Disk 1

Disk 2

Disk 3

RAID-6 (disks >= 4)
e % A3 A $
(o1 | (B2 B Bo { [B3 J
o e be b= o

- =

- _——

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Images from: Wikipedia

https://en.wikipedia.org/wiki/Standard_RAID_levels

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

RAID-4 (disks »>= 3) RAID-5 (disks >= 3) RAID-6 (disks >= 4)

D > dy @ G 8 > I i
AL A2 A3 S A AL A2 A3 A & A N
. BL | (. B2 J |.B3] |_Bs BL | (. B2 | | B | |_B3 | B» Ba B3 |
e e LhEE o c1 e el e Gh c2 L C3
.Dl,.Dz,.D3,[Dp: :Dpj~D1,~D2,~D3, D1 D2 %

Disk0 Disk 1 Disk 2 Disk 3 Disk0 Disk 1 Disk2 Disk 3 Disk® Biskl Diske Disks Dbk4

>> Fault Tolerance: RAID-0 < RAID-4 ~ RAID-5 < RAID-6 < RAID-1 Images from: Wikipedia

https://en.wikipedia.org/wiki/Standard_RAID_levels

