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Overview
- We'll start from hardware and follow a question-oriented approach 

- Intro [Q: What is an OS?] 
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms



Overview
- Storage

- Q1: Allocating storage space to files?
- Q2: File system layout?
- Q3: Files and directory names?
- Q4: Path name resolution?
- Q5: Linux file system data structures?
- Q6: Achieving crash tolerance?
- Q7: Achieving fault tolerance?
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Allocating storage space to files

> Files are just an abstraction => Need actual physical storage,    
for the data akin to how virtual memory needs physical memory

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves 
would be had, were it not for Solid State Drives (SSDs)...
> Storage devices w/o moving parts
> Faster and more reliable than HDD
> Still quite slow, compared to main memory
- Be proactive => Prefetch data (leverage spatial locality)
- Hide latency => Do slow storage operations asynchronously 



Calculating major vs minor page fault latency
int main(int argc, char **argv) {  
     // Assuming file already exists at path
     if ( (fd = open("/tmp/foo.txt", O_RDONLY, 0664)) < 0) 
            return -1;
    char *buf = mmap(NULL, page_size, PROT_READ, MAP_PRIVATE, fd, 0);
    start_time = clock_gettime_ns();
    char a = buf[0];
    end_time = clock_gettime_ns();
    printf("time elapsed: %lu ns (1st read) \n", end_time -  start_time);
    start_time = clock_gettime_ns();
    char a = buf[0];
    end_time = clock_gettime_ns();
    printf("time elapsed: %lu ns (2nd read) \n", end_time -  start_time);
 }

# 1 -> Drop in-kernel page caches 
➜  git:(master) ✗  echo 1 | sudo tee /proc/sys/vm/drop_caches 
1
➜  git:(master) ✗  ./demo
Time elapsed: 448,834 ns (1-st read) <-- Major page fault / Going to strorage
Time elapsed: 41 ns (2-nd read)
➜  git:(master) ✗  ./demo
Time elapsed: 11,041 ns (1-st read) <-- Minor page fault / Staying in main mem.
Time elapsed: 42 ns (2-nd read)
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Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks
- System-wide bitmap of free blocks
> Advantages

- Low storage overhead => Two vars per file
- Fast sequential access => Consecutive blocks
- Quick calculation of blocks for random accesses 

> Disadvantages
- Difficult to grow a file
- External fragmentation
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Allocate a linked list of blocks, with each block holding a pointer to 
the next block; essentially, per-file, an on-disk linked list     
- File metadata: A pointer to the first block
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically

> Disadvantages
- Slow on random accesses
- Storage overhead => One ptr per block
- "Unoptimizable:" Index cannot be cached
- Unreliable: Loose one block => loose everything

 
 

Linked allocation

Image from: OS Concepts, by A. Silberschatz et al.



Use a special index block (inode) to store pointers to the data blocks     
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks

 
 

Indexed allocation



Use a special index block (inode) to store pointers to the data blocks     
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.



Use a special index block (inode) to store pointers to the data blocks     
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access

 
 

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.



Use a special index block (inode) to store pointers to the data blocks     
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How?)

 
 

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.



Use a special index block (inode) to store pointers to the data blocks     
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How? Cache inodes)

 
 

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.



Use a special index block (inode) to store pointers to the data blocks     
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How? Cache inodes)

> Disadvantages
- Sequential bandwidth may not be good
- What if one index block is not big enough?

 
 

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.



Use a special index block (inode) to store pointers to the data blocks     
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How? Cache inodes)

> Disadvantages
- Sequential bandwidth may not be good
- What if one index block is not big enough?

      …We've seen this story before!
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Multilevel Indexed allocation (Linux ext2/3)

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has 
- 12 direct block pointers
- 1 indirect block pointer
- 1 double indirect block pointer
- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024^2 + 1024^3) *4KB > 4TB

And for what index size?
> 12 + (1 + 1024 + 1024^2) * 4KB ~ 4GB

Index grows dynamically, on demand...

https://cs4118.github.io/www/2024-1/
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to the inode of root dir "/")

Bitmap blocks (inodes)
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Data blocks (free)
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Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer 
to the inode of root dir "/")

Bitmap blocks (inodes)

Bitmap blocks (data)

Inodes' blocks

Data blocks (free)

Data blocks (allocated)

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315
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> Humans do not refer to files and directories via inode numbers, but 
via file names and directory names (similarly to how programs refer to 
physical memory via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it
   - "/foo/test.txt" =>  "/" -> "foo" -> "test.txt"
   - "/foo/bar/test.txt" => "/" -> "foo" -> "bar" -> "test.txt"
File and directory aliases
> Hard link: Associates a name with an inode (>=1 files, =1 dirs)
> Soft link: Associates a name with an inode of a file containing paths to files
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Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!) 
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"
 2. Read inode block of "/" to look up data blocks of "/"
 3. Read data block of "/" to look up inode no of "/foo"
 4. Read inode block of "/foo" to look up data blocks of "/foo"
 5. Read data block of "/foo" to look up inode number of "/foo/test.txt"
 6. Read inode block of "/foo/test.txt" to look up data blocks of "foo/test.txt"
 7. Read data blocks of "foo/test.txt"
Need to speed this translation disaster up
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Linux File System Data Structures

Per-process 
fd table

…

…
…

…
…
…

Global table of open 
files w/ struct file

Global path translation caches

…
…

…

…

struct dentry

Storage
struct inode

Global data cache 
for file-backed pages

Regular virtual 
memory pages

Most file-related 
syscalls read and 
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…
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The consistent update problem

Assuming writing a single block is atomic, how to ensure that 
updates to the file system (fs) occur atomically?
> Updating the file system from one consistent state to another 
requires atomically modifying several blocks (inode, bitmap, data) 
> Storage devices allow atomic writes of one block at a time
> Crashes may happen at any time leaving the fs inconsistent

Update data Update data bitmap  Update inode Outcome

yes no no Missed update

no yes no Space leak

no no yes fs inconsistent
Could read garbage 

data—Example?
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Ordered Writes

Assuming writing a single block is atomic, how to ensure that 
updates to the file system (fs) occur atomically?
> Ordered writes: Prevent fs inconsistencies by write blocks to disk in 
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized data! 
- Can leak resources (fixable: run fsck periodically)
- Cannot reorder writes and execute asynchronously <= Dealbreaker
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Journaling (also called "write-ahead" logging)
> Write down what you are going to do before doing it in a special 
append-only log file, called "journal" (see here for Linux ext3/4)
I) Journal Write: Write all blocks of TxN to the journal w/o End block
II)  Journal Commit: Write TxN's End  block to the journal
III) Journal Checkpoint: After data and metadata blks have been updated at 
                                          their final storage destination, update ckpt postion
Crash occured? Replaying committed transactions after the last checkpoint will 
bring the fs to a consistent state (crash tolerance)
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> Storage failures are irreversible => No restart button 

It is impressive that this 
piece of machinery carried 
us for so many decades...
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RAID-1 (disks >= 2)

Images from: Wikipedia

RAID-0 (disks >= 2)

2x Throughput
No Fault tolerance 
> Worse than single disk

https://en.wikipedia.org/wiki/Standard_RAID_levels
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RAID-4 (disks >= 3) RAID-5 (disks >= 3) RAID-6 (disks >= 4)

Images from: Wikipedia

A system's ability to continue operating correctly despite 
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware? Replication
Idea: Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al. 

>> Fault Tolerance: RAID-0 < RAID-4 ≈ RAID-5 < RAID-6 < RAID-1

https://en.wikipedia.org/wiki/Standard_RAID_levels

