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Overview

- We'll start from hardware and follow a question-oriented approach

* Basic (H/W & S/W)
* Abstractions

* Primitives

* Mechanisms

- Storage Management [Q: How do we allocate disk space to files?]




Overview

- Storage
- Q1: Allocating storage space to files?
- Q2: File system layout?
- Q3: Files and directory names?
- Q4: Path name resolution?
- Q5: Linux file system data structures?
- Q6: Achieving crash tolerance?
- Q7: Achieving fault tolerance?
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Allocating storage space to files

> Files are just an abstraction => Need actual
for the data akin to how virtual memory needs

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...

> Faster and more reliable than HDD
> Still quite slow, compared to main memory
- Be proactive => Prefetch data (leverage spatial locality)
- Hide latency => Do slow storage operations asynchronously



Calculating major vs minor page fault latency

int main(int argc, char **argv) {
// Assuming file already exists at path
if ((fd = open(" ", O_RDONLY, 0664)) < 0)
return -1;
char *buf = mmap(NULL, page_size, PROT_READ, MAP_PRIVATE, fd, 0):
start_time = clock_gettime_ns();
char a = buf[0];
end_time = clock_getftime_ns();
printf(" end_time - start_time);
start_time = clock_gettime_ns();
char a = buf[0];
end_time = clock_gettime_ns();
printf(" end_time - start_time);
}

# 1 -> Drop in-kernel page caches
- giti(master) X echo 1 | sudo tee /proc/sys/vm/drop_caches
1

- git:(master) X ./demo

Time elapsed: 448,834 ns (1-st read) <-- Major page fault / Going to strorage
Time elapsed: 41 ns (2-nd read)

- git:(master) X ./demo

Time elapsed: 11,041 ns (1-st read) <-- Minor page fault / Staying in main mem.
Time elapsed: 42 ns (2-nd read)
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Allocate a contiguous set of blocks, of sufficient size to each file

- File metadata: Starting block and no of blocks
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Contiguous allocation

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks
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Contiguous allocation

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks

A
B
> count
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Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
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Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
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Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
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Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block:; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

P N directory
e il file  start end
j 9 25
> Advantages o) 1 200 01| L

- No fragmentation 40 501 60 70
- Files can easily grow dynamically 8] plil10[211[]
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- Slow on random accesses
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Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block:; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block

P N directory
e il file  start end
j 9 25
> Advantages o) 1 200 01| L

- No fragmentation 40 51601 707
- Files can easily grow dynamically 8] plil10[211[]

> Disadvantages
- Slow on random accesses

O [J23[]
- Storage overhead => One ptr per block N 212 -

) < © ) 242526127 ]
- "Unoptimizable:" Index cannot be cached 2820130 J31 ]

- Unreliable: Loose one block => loose everything N
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Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access
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Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How?)
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Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How? Cache inodes)
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Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk
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Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk

d P N directory
> A vanTageS ) | - file index block
- No fragmentation o] 1EL\2IZI 3] [ 1?
- Files can easily grow dynamically 40 s0J 601 701
- Fast random access (How? Cache inodes) 8] olJ10[110]
> Disadvantages RIS
16 18[ ]

- Sequential bandwidth may not be good
- What if one index block is not big enough?

..We've seen this story beforel
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Multilevel Indexed allocation (Linux ext2/3)

direct blocks

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer
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Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer

- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024"2 + 1024"3) *4KB > 4TB

And for what index size?
> 12 + (1 + 1024 + 1024°2) * 4KB ~ 4GB
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Multilevel Indexed allocation (Linux ext2/3)

direct blocks
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Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has

- 12 direct block pointers

- lindirect block pointer

- 1 double indirect block pointer

- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024"2 + 1024"3) *4KB > 4TB

And for what index size?
> 12 + (1 + 1024 + 1024°2) * 4KB ~ 4GB

Index grows dynamically, on demand...
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Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer _
S | to the inode of root dir " /") - Bitmap blocks (data) . Data blocks (free)

. Bitmap blocks (inodes) - Inodes’ blocks
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Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer _
S | to the inode of root dir " /") - Bitmap blocks (data) . Data blocks (free)

. Bitmap blocks (inodes) - Inodes’ blocks Data blocks (allocated)



https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315
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File and Directory Names

> Humans do not refer to files and directories via numbers, but
via file names and directory names (similarly to how programs refer to
via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it
- "/foo/test.txt" => "/" ->"foo" -> "test.txt"
- "/foo/bar/test.txt" =>"/" -> "foo" -> "bar" -> "test.txt"
File and directory aliases
> Hard link: Associates a name with an inode (>=1 files, =1 dirs)
> Soft link: Associates a name with an inode of a file containing paths to files
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Path Name Resolution

We need a fast translation from path names to
> File and dir names are paths starting from root (Let a TLB PTSD kick inl)

Example: "/foo/test.txt" =>"/" -> "foo" -> "test. txt"
1. Read superblock to look up inode no of “/*

3. Read data block of “/" to look up inode no of "/foo"

5. Read data block of "/foo" to look up inode number of "/foo/test.txt"

7. Read data blocks of "foo/test.txt"
Need to speed this up
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Linux File System Data Structures

Per-process

fd table

fd=0
fd=1
fd=2
fd=3

Storage

255
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Linux File System Data Structures

Global table of open
files w/ struct file

Per-process

fd table Storage
fd=0 f _inode
fd=1 f _path
fd=2 dentry
fd=3 — mnt
— f flags
255
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The consistent update problem

_how to ensure that
updates to the file system (fs) occur atomically?

> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)

> Storage devices allow at a tfime
> Crashes may happen at any time leaving the fs inconsistent

Update data | Update data bitmap | Update inode Outcome
yes no no Missed update
no yes no Space leak
: : Could read garbage
no no yes fs inconsistent data—Example?
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Ordered Writes

_how to ensure that
updates fo the file system (fs) occur atomically?

> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized datal
- Can leak resources (fixable: run fsck periodically)
- Cannot reorder writes and execute asynchronously <= Dealbreaker
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I) Journal Write: Write all blocks of TxN to the journal w/o End block

inode | data bitmap inode data bitmap inode data bitmap
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append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block
Write TxN's End block to the journal

inode | data bitmap Endl  Start2 inode data bitmap End2  ~ | StartN inode data bitmap

Startl "o bk | blk bk  blk bk bk bk  blk

- _/ - _/ - _J
~

Tx1 Tx2 TxN
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Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block
Write TxN's End block to the journal

ITT) Journal Checkpoint: After data and metadata blks have been updated at
their final storage destination, update ckpt postion

inode | data bitmap Endl  Start2 inode data bitmap End2 inode data bitmap

Startl "o bk | blk blk bk  blk StartN "o bk | blk

- _/ - _/ - _J
~

Tx1 Tx2 TxN
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Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block
Write TxN's End block to the journal

ITT) Journal Checkpoint: After data and metadata blks have been updated at
their final storage destination, update ckpt postion

¢ Checkpoint position Last committed Tx

inode | data bitmap Endl  Start2 inode data bitmap End2 inode data bitmap

Startl "o bk | blk blk bk  blk StartN "o bk | blk

- _/ - _/ - _J
~

Tx1 Tx2 TxN
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Journaling (also called "write-ahead" logging)

> Write down what you are going to do before doing it in a special
append-only log file, called "journal” (see here for Linux ext3/4)

I) Journal Write: Write all blocks of TxN to the journal w/o End block
Write TxN's End block to the journal

ITT) Journal Checkpoint: After data and metadata blks have been updated at
their final storage destination, update ckpt postion

Crash occured? Replaying committed transactions after the last checkpoint will
bring the fs to a consistent state (crash tolerance)

¢ Checkpoint position Last committed Tx

inode | data bitmap End1

inode data bitmap inode data bitmap
blk | blk blk End2

Startl blk bk  blk StartN "o bk | blk

Start2

- _/ - _/ - _J
~

Tx1 Tx2 TxN (incomplete)
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A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.
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> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.
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Fault Tolerance

A system's ability to continue operating correctly despite
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> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.
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A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

> How to build fault tolerant systems using unreliable hardware? Replication
Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.
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