
 Fall 2025 @dit

K22 – Operating Systems:
Design Principles and Internals

Vaggelis Atlidakis
Lecture 20

References: Similar OS courses @Columbia, @Stanford, @UC San Diego, @Brown, @di (previous years);
and textbooks: Operating Systems: Three Easy Pieces, Operating Systems: Principles and Practice, Operating

System Concepts, Linux Kernel Development, Understanding the Linux Kernel

https://www.cs.columbia.edu/~nieh/teaching/w4118/
https://www.scs.stanford.edu/24wi-cs212/
https://amyousterhout.com/cse221-fall24/index.html
https://brown-cs1690.github.io/brown-cs167-s25/
https://www.alexdelis.eu/k22/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://recursivebooks.com/
https://www.os-book.com/OS9/
https://www.os-book.com/OS9/
http://pearsonhighered.com/educator/product/Linux-Kernel-Development/9780672329463.page
http://www.oreilly.com/catalog/understandlk/

Overview
- We'll start from hardware and follow a question-oriented approach

- Intro [Q: What is an OS?]
- Events [Q: When does the OS run?]
- Runtime [Q: How does a program look like in memory?]
- Processes [Q: What is a process?]
- IPC [Q: How do processes communicate?]
- Threads [Q: What is a thread?]
- Synchronization [Q: What goes wrong w/o synchronization?]
- Time Management [Q: What is scheduling?]
- Memory Management [Q: What is virtual memory?]
- Files [Q: What is a file descriptor?]
- Storage Management [Q: How do we allocate disk space to files?]

* Basic (H/W & S/W)
* Abstractions
* Primitives
* Mechanisms

Overview
- Storage

- Q1: Allocating storage space to files?
- Q2: File system layout?
- Q3: Files and directory names?
- Q4: Path name resolution?
- Q5: Linux file system data structures?
- Q6: Achieving crash tolerance?
- Q7: Achieving fault tolerance?

Allocating storage space to files

Allocating storage space to files

> Files are just an abstraction => Need actual physical storage,
for the data akin to how virtual memory needs physical memory

Allocating storage space to files

> Files are just an abstraction => Need actual physical storage,
for the data akin to how virtual memory needs physical memory

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...

Allocating storage space to files

> Files are just an abstraction => Need actual physical storage,
for the data akin to how virtual memory needs physical memory

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...
> Storage devices w/o moving parts

Allocating storage space to files

> Files are just an abstraction => Need actual physical storage,
for the data akin to how virtual memory needs physical memory

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...
> Storage devices w/o moving parts
> Faster and more reliable than HDD

Allocating storage space to files

> Files are just an abstraction => Need actual physical storage,
for the data akin to how virtual memory needs physical memory

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...
> Storage devices w/o moving parts
> Faster and more reliable than HDD
> Still quite slow, compared to main memory

Allocating storage space to files

> Files are just an abstraction => Need actual physical storage,
for the data akin to how virtual memory needs physical memory

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...
> Storage devices w/o moving parts
> Faster and more reliable than HDD
> Still quite slow, compared to main memory
- Be proactive => Prefetch data (leverage spatial locality)

Allocating storage space to files

> Files are just an abstraction => Need actual physical storage,
for the data akin to how virtual memory needs physical memory

- A longer conversation on Hard Disk Drives (HDDs) and rotational moves
would be had, were it not for Solid State Drives (SSDs)...
> Storage devices w/o moving parts
> Faster and more reliable than HDD
> Still quite slow, compared to main memory
- Be proactive => Prefetch data (leverage spatial locality)
- Hide latency => Do slow storage operations asynchronously

Calculating major vs minor page fault latency
int main(int argc, char **argv) {
 // Assuming file already exists at path
 if ((fd = open("/tmp/foo.txt", O_RDONLY, 0664)) < 0)
 return -1;
 char *buf = mmap(NULL, page_size, PROT_READ, MAP_PRIVATE, fd, 0);
 start_time = clock_gettime_ns();
 char a = buf[0];
 end_time = clock_gettime_ns();
 printf("time elapsed: %lu ns (1st read) \n", end_time - start_time);
 start_time = clock_gettime_ns();
 char a = buf[0];
 end_time = clock_gettime_ns();
 printf("time elapsed: %lu ns (2nd read) \n", end_time - start_time);
 }

1 -> Drop in-kernel page caches
➜ git:(master) ✗ echo 1 | sudo tee /proc/sys/vm/drop_caches
1
➜ git:(master) ✗ ./demo
Time elapsed: 448,834 ns (1-st read) <-- Major page fault / Going to strorage
Time elapsed: 41 ns (2-nd read)
➜ git:(master) ✗ ./demo
Time elapsed: 11,041 ns (1-st read) <-- Minor page fault / Staying in main mem.
Time elapsed: 42 ns (2-nd read)

How do we allocate persistent storage space to files?
> Systems people are very predictable…

Allocating storage space to files

How do we allocate persistent storage space to files?
> Systems people are very predictable…
> Split storage to fixed-size chucks, called blocks

Allocating storage space to files

How do we allocate persistent storage space to files?
> Systems people are very predictable…
> Split storage to fixed-size chucks, called blocks
> Use n blocks to serve a file, where n = filesize / blocksize
> Allocation strategies

Allocating storage space to files

How do we allocate persistent storage space to files?
> Systems people are very predictable…
> Split storage to fixed-size chucks, called blocks
> Use n blocks to serve a file, where n = filesize / blocksize
> Allocation strategies

- Contiguous allocation
- Linked allocation
- Indexed allocation
- Multi-level indexed allocation

Allocating storage space to files

How do we allocate persistent storage space to files?
> Systems people are very predictable…
> Split storage to fixed-size chucks, called blocks
> Use n blocks to serve a file, where n = filesize / blocksize
> Allocation strategies

- Contiguous allocation
- Linked allocation
- Indexed allocation
- Multi-level indexed allocation

Allocating storage space to files

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks
- System-wide bitmap of free blocks

Contiguous allocation

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks
- System-wide bitmap of free blocks

Contiguous allocation

Image from: OS Concepts, by A. Silberschatz et al.

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks
- System-wide bitmap of free blocks
> Advantages

- Low storage overhead => Two vars per file
- Fast sequential access => Consecutive blocks
- Quick calculation of blocks for random accesses

Contiguous allocation

Image from: OS Concepts, by A. Silberschatz et al.

Allocate a contiguous set of blocks, of sufficient size to each file
- File metadata: Starting block and no of blocks
- System-wide bitmap of free blocks
> Advantages

- Low storage overhead => Two vars per file
- Fast sequential access => Consecutive blocks
- Quick calculation of blocks for random accesses

> Disadvantages
- Difficult to grow a file
- External fragmentation

Contiguous allocation

Image from: OS Concepts, by A. Silberschatz et al.

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
- System-wide bitmap of free blocks

Linked allocation

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
- System-wide bitmap of free blocks

Linked allocation

Image from: OS Concepts, by A. Silberschatz et al.

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically

Linked allocation

Image from: OS Concepts, by A. Silberschatz et al.

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically

> Disadvantages
- Slow on random accesses

Linked allocation

Image from: OS Concepts, by A. Silberschatz et al.

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically

> Disadvantages
- Slow on random accesses
- Storage overhead => One ptr per block

Linked allocation

Image from: OS Concepts, by A. Silberschatz et al.

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically

> Disadvantages
- Slow on random accesses
- Storage overhead => One ptr per block
- "Unoptimizable:" Index cannot be cached

Linked allocation

Image from: OS Concepts, by A. Silberschatz et al.

Allocate a linked list of blocks, with each block holding a pointer to
the next block; essentially, per-file, an on-disk linked list
- File metadata: A pointer to the first block
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically

> Disadvantages
- Slow on random accesses
- Storage overhead => One ptr per block
- "Unoptimizable:" Index cannot be cached
- Unreliable: Loose one block => loose everything

Linked allocation

Image from: OS Concepts, by A. Silberschatz et al.

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks

Indexed allocation

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How?)

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How? Cache inodes)

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How? Cache inodes)

> Disadvantages
- Sequential bandwidth may not be good
- What if one index block is not big enough?

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.

Use a special index block (inode) to store pointers to the data blocks
- File metadata: Location of the inode block on disk
- System-wide bitmap of free blocks
> Advantages

- No fragmentation
- Files can easily grow dynamically
- Fast random access (How? Cache inodes)

> Disadvantages
- Sequential bandwidth may not be good
- What if one index block is not big enough?

 …We've seen this story before!

Indexed allocation

Image from: OS Concepts, by A. Silberschatz et al.

Multilevel Indexed allocation (Linux ext2/3)

Multilevel Indexed allocation (Linux ext2/3)

Image from: COMS 4118, Operating Systems I

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has
- 12 direct block pointers
- 1 indirect block pointer
- 1 double indirect block pointer
- 1 triple indirect block pointer

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has
- 12 direct block pointers
- 1 indirect block pointer
- 1 double indirect block pointer
- 1 triple indirect block pointer

What is the max supported file size?

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has
- 12 direct block pointers
- 1 indirect block pointer
- 1 double indirect block pointer
- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024^2 + 1024^3) *4KB > 4TB

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has
- 12 direct block pointers
- 1 indirect block pointer
- 1 double indirect block pointer
- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024^2 + 1024^3) *4KB > 4TB

And for what index size?

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has
- 12 direct block pointers
- 1 indirect block pointer
- 1 double indirect block pointer
- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024^2 + 1024^3) *4KB > 4TB

And for what index size?
> 12 + (1 + 1024 + 1024^2) * 4KB ~ 4GB

https://cs4118.github.io/www/2024-1/

Multilevel Indexed allocation (Linux ext2/3)

Image from: COMS 4118, Operating Systems I

Assume 4KB blocks and 4 bytes ptrs
> A typical 256 bytes inode has
- 12 direct block pointers
- 1 indirect block pointer
- 1 double indirect block pointer
- 1 triple indirect block pointer

What is the max supported file size?
> (12 + 1024 + 1024^2 + 1024^3) *4KB > 4TB

And for what index size?
> 12 + (1 + 1024 + 1024^2) * 4KB ~ 4GB

Index grows dynamically, on demand...

https://cs4118.github.io/www/2024-1/

 S B B B B B B i i i i i i i i

 i i i i i A A A A A

 A A A A A

 A

 A A A A A A A A A

 S

Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer
to the inode of root dir "/")

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315

 S B B B B B B i i i i i i i i

 i i i i i A A A A A

 A A A A A

 A

 A A A A A A A A A

 S

 B

 B

Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer
to the inode of root dir "/")

Bitmap blocks (inodes)

Bitmap blocks (data)

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315

 S B B B B B B i i i i i i i i

 i i i i i A A A A A

 A A A A A

 A

 A A A A A A A A A

 i

 S

 B

 A B

Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer
to the inode of root dir "/")

Bitmap blocks (inodes)

Bitmap blocks (data)

Inodes' blocks

Data blocks (free)

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315

 S B B B B B B i i i i i i i i

 i i i i i A A A A A

 A A A A A

 A

 A A A A A A A A A

 i

 S

 B

 A B

Simplified Filesystem Layout (Linux ext2/3)

Superblock (holds pointer
to the inode of root dir "/")

Bitmap blocks (inodes)

Bitmap blocks (data)

Inodes' blocks

Data blocks (free)

Data blocks (allocated)

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1315

File and Directory Names

File and Directory Names

> Humans do not refer to files and directories via inode numbers, but
via file names and directory names (similarly to how programs refer to
physical memory via virtual addresses)

File and Directory Names

> Humans do not refer to files and directories via inode numbers, but
via file names and directory names (similarly to how programs refer to
physical memory via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy

File and Directory Names

> Humans do not refer to files and directories via inode numbers, but
via file names and directory names (similarly to how programs refer to
physical memory via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it

File and Directory Names

> Humans do not refer to files and directories via inode numbers, but
via file names and directory names (similarly to how programs refer to
physical memory via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it
 - "/foo/test.txt" => "/" -> "foo" -> "test.txt"

File and Directory Names

> Humans do not refer to files and directories via inode numbers, but
via file names and directory names (similarly to how programs refer to
physical memory via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it
 - "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 - "/foo/bar/test.txt" => "/" -> "foo" -> "bar" -> "test.txt"

File and Directory Names

> Humans do not refer to files and directories via inode numbers, but
via file names and directory names (similarly to how programs refer to
physical memory via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it
 - "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 - "/foo/bar/test.txt" => "/" -> "foo" -> "bar" -> "test.txt"
File and directory aliases

File and Directory Names

> Humans do not refer to files and directories via inode numbers, but
via file names and directory names (similarly to how programs refer to
physical memory via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it
 - "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 - "/foo/bar/test.txt" => "/" -> "foo" -> "bar" -> "test.txt"
File and directory aliases
> Hard link: Associates a name with an inode (>=1 files, =1 dirs)

File and Directory Names

> Humans do not refer to files and directories via inode numbers, but
via file names and directory names (similarly to how programs refer to
physical memory via virtual addresses)
- Files and dirs are organized on an acyclic-graph hierarchy
- Special "/" root directory: All names are paths starting it
 - "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 - "/foo/bar/test.txt" => "/" -> "foo" -> "bar" -> "test.txt"
File and directory aliases
> Hard link: Associates a name with an inode (>=1 files, =1 dirs)
> Soft link: Associates a name with an inode of a file containing paths to files

Path Name Resolution

Path Name Resolution

We need a fast translation from path names to inodes

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"
 2. Read inode block of "/" to look up data blocks of "/"

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"
 2. Read inode block of "/" to look up data blocks of "/"
 3. Read data block of "/" to look up inode no of "/foo"

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"
 2. Read inode block of "/" to look up data blocks of "/"
 3. Read data block of "/" to look up inode no of "/foo"
 4. Read inode block of "/foo" to look up data blocks of "/foo"

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"
 2. Read inode block of "/" to look up data blocks of "/"
 3. Read data block of "/" to look up inode no of "/foo"
 4. Read inode block of "/foo" to look up data blocks of "/foo"
 5. Read data block of "/foo" to look up inode number of "/foo/test.txt"

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"
 2. Read inode block of "/" to look up data blocks of "/"
 3. Read data block of "/" to look up inode no of "/foo"
 4. Read inode block of "/foo" to look up data blocks of "/foo"
 5. Read data block of "/foo" to look up inode number of "/foo/test.txt"
 6. Read inode block of "/foo/test.txt" to look up data blocks of "foo/test.txt"

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"
 2. Read inode block of "/" to look up data blocks of "/"
 3. Read data block of "/" to look up inode no of "/foo"
 4. Read inode block of "/foo" to look up data blocks of "/foo"
 5. Read data block of "/foo" to look up inode number of "/foo/test.txt"
 6. Read inode block of "/foo/test.txt" to look up data blocks of "foo/test.txt"
 7. Read data blocks of "foo/test.txt"

Path Name Resolution

We need a fast translation from path names to inodes
> File and dir names are paths starting from root (Let a TLB PTSD kick in!)
Example: "/foo/test.txt" => "/" -> "foo" -> "test.txt"
 1. Read superblock to look up inode no of "/"
 2. Read inode block of "/" to look up data blocks of "/"
 3. Read data block of "/" to look up inode no of "/foo"
 4. Read inode block of "/foo" to look up data blocks of "/foo"
 5. Read data block of "/foo" to look up inode number of "/foo/test.txt"
 6. Read inode block of "/foo/test.txt" to look up data blocks of "foo/test.txt"
 7. Read data blocks of "foo/test.txt"
Need to speed this translation disaster up

Linux File System Data Structures

Linux File System Data Structures

Per-process
fd table Storage

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26

Linux File System Data Structures

Per-process
fd table

…

…
…

…
…
…

Global table of open
files w/ struct file

Storage

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094

Linux File System Data Structures

Per-process
fd table

…

…
…

…
…
…

Global table of open
files w/ struct file

Global path translation caches

…
…

…

…

struct dentry

Storage
struct inode

…

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094
https://elixir.bootlin.com/linux/v6.14/source/include/linux/dcache.h#L91
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L671

Linux File System Data Structures

Per-process
fd table

…

…
…

…
…
…

Global table of open
files w/ struct file

Global path translation caches

…
…

…

…

struct dentry

Storage
struct inode

Global data cache
for file-backed pages
…

…

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094
https://elixir.bootlin.com/linux/v6.14/source/include/linux/dcache.h#L91
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L671

Linux File System Data Structures

Per-process
fd table

…

…
…

…
…
…

Global table of open
files w/ struct file

Global path translation caches

…
…

…

…

struct dentry

Storage
struct inode

Global data cache
for file-backed pages

Most file-related
syscalls read and

write from/to here,
unless fsync'ed

…

…

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094
https://elixir.bootlin.com/linux/v6.14/source/include/linux/dcache.h#L91
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L671

Linux File System Data Structures

Per-process
fd table

…

…
…

…
…
…

Global table of open
files w/ struct file

Global path translation caches

…
…

…

…

struct dentry

Storage
struct inode

Global data cache
for file-backed pages

Regular virtual
memory pages

Most file-related
syscalls read and

write from/to here,
unless fsync'ed

…

…

…

https://elixir.bootlin.com/linux/v6.14/source/include/linux/fdtable.h#L26
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L1094
https://elixir.bootlin.com/linux/v6.14/source/include/linux/dcache.h#L91
https://elixir.bootlin.com/linux/v6.14/source/include/linux/fs.h#L671

The consistent update problem

The consistent update problem

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?

The consistent update problem

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)

The consistent update problem

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)
> Storage devices allow atomic writes of one block at a time

The consistent update problem

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)
> Storage devices allow atomic writes of one block at a time
> Crashes may happen at any time leaving the fs inconsistent

The consistent update problem

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)
> Storage devices allow atomic writes of one block at a time
> Crashes may happen at any time leaving the fs inconsistent

Update data Update data bitmap Update inode Outcome

yes no no

no yes no

no no yes

The consistent update problem

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)
> Storage devices allow atomic writes of one block at a time
> Crashes may happen at any time leaving the fs inconsistent

Update data Update data bitmap Update inode Outcome

yes no no Missed update

no yes no Space leak

no no yes fs inconsistent

The consistent update problem

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Updating the file system from one consistent state to another
requires atomically modifying several blocks (inode, bitmap, data)
> Storage devices allow atomic writes of one block at a time
> Crashes may happen at any time leaving the fs inconsistent

Update data Update data bitmap Update inode Outcome

yes no no Missed update

no yes no Space leak

no no yes fs inconsistent
Could read garbage

data—Example?

Ordered Writes

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order

Ordered Writes

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

Ordered Writes

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized data!

Ordered Writes

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized data!
- Can leak resources

Ordered Writes

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized data!
- Can leak resources (fixable: run fsck periodically)

Ordered Writes

Assuming writing a single block is atomic, how to ensure that
updates to the file system (fs) occur atomically?
> Ordered writes: Prevent fs inconsistencies by write blocks to disk in
safe order: Write data blk -> Write data bitmap blk -> Write inode blk

- Ensures inodes never point to uninitialized data!
- Can leak resources (fixable: run fsck periodically)
- Cannot reorder writes and execute asynchronously <= Dealbreaker

Journaling (also called "write-ahead" logging)

Journaling (also called "write-ahead" logging)
> Write down what you are going to do before doing it in a special
append-only log file, called "journal" (see here for Linux ext3/4)

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)
> Write down what you are going to do before doing it in a special
append-only log file, called "journal" (see here for Linux ext3/4)
I) Journal Write: Write all blocks of TxN to the journal w/o End block

Start1 inode
blk

data
blk

bitmap
blk End1 Start2 inode

blk
data
blk

bitmap
blk End2 StartN inode

blk
data
blk

bitmap
blk

Tx1 Tx2 TxN

…

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)
> Write down what you are going to do before doing it in a special
append-only log file, called "journal" (see here for Linux ext3/4)
I) Journal Write: Write all blocks of TxN to the journal w/o End block
II) Journal Commit: Write TxN's End block to the journal

Start1 inode
blk

data
blk

bitmap
blk End1 Start2 inode

blk
data
blk

bitmap
blk End2 StartN inode

blk
data
blk

bitmap
blk

Tx1 Tx2

…

TxN

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)
> Write down what you are going to do before doing it in a special
append-only log file, called "journal" (see here for Linux ext3/4)
I) Journal Write: Write all blocks of TxN to the journal w/o End block
II) Journal Commit: Write TxN's End block to the journal
III) Journal Checkpoint: After data and metadata blks have been updated at
 their final storage destination, update ckpt postion

Start1 inode
blk

data
blk

bitmap
blk End1 Start2 inode

blk
data
blk

bitmap
blk End2 StartN inode

blk
data
blk

bitmap
blk

Tx1 Tx2

…

TxN

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)
> Write down what you are going to do before doing it in a special
append-only log file, called "journal" (see here for Linux ext3/4)
I) Journal Write: Write all blocks of TxN to the journal w/o End block
II) Journal Commit: Write TxN's End block to the journal
III) Journal Checkpoint: After data and metadata blks have been updated at
 their final storage destination, update ckpt postion

Start1 inode
blk

data
blk

bitmap
blk End1 Start2 inode

blk
data
blk

bitmap
blk End2 StartN inode

blk
data
blk

bitmap
blk

Checkpoint position

Tx1 Tx2

…
Last committed Tx

TxN

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Journaling (also called "write-ahead" logging)
> Write down what you are going to do before doing it in a special
append-only log file, called "journal" (see here for Linux ext3/4)
I) Journal Write: Write all blocks of TxN to the journal w/o End block
II) Journal Commit: Write TxN's End block to the journal
III) Journal Checkpoint: After data and metadata blks have been updated at
 their final storage destination, update ckpt postion
Crash occured? Replaying committed transactions after the last checkpoint will
bring the fs to a consistent state (crash tolerance)

Start1 inode
blk

data
blk

bitmap
blk End1 Start2 inode

blk
data
blk

bitmap
blk End2 StartN inode

blk
data
blk

bitmap
blk

Checkpoint position

Tx1 Tx2 TxN (incomplete)

…
Last committed Tx

https://elixir.bootlin.com/linux/v6.18.2/source/fs/jbd2/commit.c#L348

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> Storage failures are irreversible => No restart button

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> Storage failures are irreversible => No restart button

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> Storage failures are irreversible => No restart button

It is impressive that this
piece of machinery carried
us for so many decades...

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware?

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware? Replication

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware? Replication
Idea: Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

Fault Tolerance

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware? Replication
Idea: Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

RAID-1 (disks >= 2)

Images from: Wikipedia

RAID-0 (disks >= 2)

2x Throughput
No Fault tolerance
> Worse than single disk

https://en.wikipedia.org/wiki/Standard_RAID_levels

Fault Tolerance

RAID-4 (disks >= 3)

Images from: Wikipedia

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware? Replication
Idea: Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

https://en.wikipedia.org/wiki/Standard_RAID_levels

Fault Tolerance

RAID-4 (disks >= 3) RAID-5 (disks >= 3)

Images from: Wikipedia

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware? Replication
Idea: Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

https://en.wikipedia.org/wiki/Standard_RAID_levels

Fault Tolerance

RAID-4 (disks >= 3) RAID-5 (disks >= 3) RAID-6 (disks >= 4)

Images from: Wikipedia

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware? Replication
Idea: Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

https://en.wikipedia.org/wiki/Standard_RAID_levels

Fault Tolerance

RAID-4 (disks >= 3) RAID-5 (disks >= 3) RAID-6 (disks >= 4)

Images from: Wikipedia

A system's ability to continue operating correctly despite
hardware failure (i.e., faults) is called fault tolerance
> How to build fault tolerant systems using unreliable hardware? Replication
Idea: Redundant Array of Inexpensive Disks (RAID), 1988, D. Patterson et al.

>> Fault Tolerance: RAID-0 < RAID-4 ≈ RAID-5 < RAID-6 < RAID-1

https://en.wikipedia.org/wiki/Standard_RAID_levels

