Q1: When does the OS run?

The OS is a giant handler of events, designed to handle two types of events:

Asynchronous events: Events that occur due to reasons external to what program instructions
the processor is currently executing (e.g., a packet arrives from the web and the OS is notified
to copy it to memory).

Synchronous events: Events that occur synchronously as a result of the execution of a
program's instructions (e.g., a user program asks the OS to perform a privileged operation on its
behalf; or, the processor executes an illegal instruction such as a division by zero).

Q2: What synchronous events invoke the OS?

System calls: System calls (syscalls) are the interface between user programs and the OS kernel, and
are the designated mechanism allowing user-space programs to request services from the OS. (For
example, Linux x86_64 defines ~540 syscalls and aarch64 defines ~466 syscalls.)

Exceptions: Synchronous events that are generated when the processor detects predefined "special"
conditions while executing instructions. There are three classes of exceptions: faults, traps, and
aborts—depending (i) on whether the OS can fix the precondition that caused them, or not; and (ii) on
whether the instruction that triggered them will be re-executed after the OS returns control to the
program whose execution caused the processor exception, or not.

A fault is an exception that can generally be corrected and that, once corrected, allows the
program to be restarted without loss of continuity.

When a fault is reported in user mode, the processor automatically pushes its registers
to the program's dedicated kernel stack.

This state is necessary so that the processor can restore its state prior to the beginning
of the execution of the faulting instruction.

The return address for the fault handler points at the faulting instruction, rather than to
the instruction following the faulting instruction. [restartable / e.g., page fault.] [Q: Why?
So that after the fault is handled, it can be re-executed / re-started.]

A trap is an exception that is reported immediately following the execution of the trapping
instruction.

Traps allow the execution of a program to be continued without loss of the program's
continuity.

The return address for the trap handler points at the instruction following the trapping
instruction. [not restartable / e.g., int 0x80 (the old way of making syscalls; also called a
"software interrupt.")]

An abort is an exception that does not always report the precise location of the instruction that
caused it.

Aborts are used to report severe errors, such as hardware errors and inconsistent or
illegal values in system tables. [Not restartable, severe errors / e.g., hardware failures.]

Q3: What asynchronous events invoke the OS?

Interrupts: Asynchronous events are typically triggered by 1/O devices. Interrupts occur at random
times during the execution of a program, in response to signals sent to the processor from external
hardware. (The software can also generate synchronous interrupts, called "software" interrupts—e.g., in
x86_32, by executing the int 0x80 instruction, which is the old way of making system calls.)

https://elixir.bootlin.com/linux/v6.13.7/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/v6.13.7/source/arch/x86/entry/syscalls/syscall_64.tbl

Exception?
User | User J
space Space
-
-—
Kernel _‘ Kernel Interupt?
SRELs space

Q4: How do user programs know what services the OS offers?

Since syscalls are the single way for user programs to request services from the OS, their interfaces
must be well-defined.
User programs must not break on kernel updates
User programs must be portable across OSes of "the same family."
- OKto recompile my code if | move to another OS
- Don't make me rewrite my code if | move from one OS variant to another, because syscall
SYS_read() takes three, instead of two, arguments.
Portable Operating System Interface for UNIX (POSIX) is the IEEE standard for portable UNIX-based
OS syscall interfaces.
- It describes a set of fundamental abstractions needed for efficient construction of applications.
- While perfect portability was never a reality, the uniformity added by POSIX has always been
valuable.
- User programs can directly invoke system calls, but going through POSIX (e.g., by using glibc in
GNU/Linux) ensures portability across different architectures of POSIX-compliant OSes.

Q5: What services do POSIX-compliant OSes offer?

POSIX defines 1,200 interfaces, around the following core abstractions and mechanisms.
"A process is an address space with one or more threads executing within that address space,
and the required system resources for those threads.” IEEE Std 1003.1-2008 (POSIX.1-2008),
Base Definitions, Section 3.189.

- "A thread is a single flow of control within a process, with its own thread ID, scheduling priority
and policy, errno value, floating-point environment, thread-specific key/value bindings, and the
required system resources to support a flow of control." IEEE Std 1003.1-2008 (POSIX.1-2008),
Base Definitions, Section 3.190.

- "A file is an object that can be written to, read from, or both. A file has certain attributes,
including access permissions and type. File types include regular file, character special file,
block special file, FIFO special file, symbolic link, socket, and directory." IEEE Std 1003.1-2008
(POSIX.1-2008), Base Definitions, Section 3.139.

- All definitions are here: https://pubs.opengroup.org/onlinepubs/9799919799/.

https://pubs.opengroup.org/onlinepubs/9799919799/functions/
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://pubs.opengroup.org/onlinepubs/9799919799/
https://pubs.opengroup.org/onlinepubs/9799919799/

POSIX-compliant OSes

User programs anticipate

User _ a set of common abstractions
space from POSIX-compliant systems
o 5 Os-specific libs with

} syscall wrappers provide
POSIX-compliant interfaces
Kernel -
space

- Q6: What interrupts and exceptions are supported by the x86 and ARM processor
architectures?

x86 interrupt and exception vectors

Vector NR Exception/Interrupt Name Type
Divide Error Fault
1 Debug Exception Fault/Trap
2 Non-Maskable Interrupt (NMI) Interrupt
3 Breakpoint Exception Trap
4 Overflow Exception Trap
5 Bound Range Exceeded Fault
6 Invalid Opcode Fault
7 Device Not Available (No Math Coprocessor) Fault
8 Double Fault Abart
9 Coprocessor Segment Overrun (Legacy) Fault
10 Invalid TSS Fault
11 Segment Not Present Fault
12 5tack-Segment Fault Fault
13 General Protection Fault (GPF) Fault
14 Page Fault Fault
15 Reserved -
16 x87 Floating-Point Exception Fault
17 Alignment Check Fault
18 Machine Check Abart
19 SIMD Floating-Point Exception Fault
20 Virtualization Exception Fault
21-31 Reserved -
32-255 User-Defined Interrupts Interrupt

ARM interrupt and exception vectors

Vector NR Exception/Interrupt Name Type
Initial Stack Pointer -

1 Reset Handler

2 NMI Handler

3 HardFault Handler Fault

4 MemManage Fault

5 BusFault Handler Abort

6 UsageFault Handler Fault
7-10 Reserved Reserved

11 SVCall Handler

12 Debug Monitor

13 - Reserved
14 PendSV Handler

15 SysTick Handler

16+ External Interrupts Reserved

Q7: What is Linux?

- A modern, open-source, POSIX-compliant operating system kernel.

- Written in '91 by Linus Torvalds from scratch ~ 100 KLoC (Jan '25: > 40 MLoC).
- Strictly speaking, Linux is an OS kernel and does not include user-space tools, libraries, or a full system
environment on its own.
- In common usage, "Linux" refers to Linux-based operating systems (also called distributions).
- The most common Linux distributions include Ubuntu, Debian, Fedora, and RedHat.
- The Linux kernel structure
- Core kernel subsystems
- Memory management
- Processor time management
- Interprocess Communication (IPC).
- 1/O subsystems
- Device drivers
- File systems
- Networking
- Dynamically loadable modules (~60% of the codebase)
- Originally developed to support the conditional inclusion of device drivers.
- Otherwise, the kernel would either need to include code for all possible devices or to be
recompiled to add support for every new device.
- Linux is by far the most popular Unix-like operating system today
- Runs on billions of processors
- Servers: Over 96% of the world's top 1 million websites run on Linux servers.
- Cloud: AWS, Google Cloud, and Azure rely heavily on Linux.
- Supercomputers: Alimost 100% of the top 500 supercomputers run Linux.
- Android devices: >3 billion devices — Android is built atop the Linux kernel.

User space

Kernel space

Structure of the Linux kernel

DIV D DI

3 3
J

System calls interface

1/0 related Core subsystems

. Structure of
File Systems, Mem Management, the Linux
Metworking, Scheduling, kernel

Dev. Drivers IPC

Architecture-dependent code

- Q8: What per-processor state does the Linux kernel set during early boot in x86?

- To properly handle syscalls, exceptions, and interrupts, the operating system must set up several critical

tables in dedicated per-processor memory areas, including

An Interrupt Descriptor Table (IDT), which holds descriptors to Interrupt Service Routines (ISRs)
and exception handlers, along with their respective Descriptor Privilege Level (DPL)—which, the
processor automatically checks against its Current Privilege Level (CPL) of execution every time
an ISR is invoked.
A Global Descriptor Table (GDT), which holds descriptors with information about
User and kernel, code and data segments (e.g., base address and size).
A Task State Segment (TSS) descriptor with information about the address of the kernel
stack for the program that the processor is currently executing (e.g., the TSS.sp0 field,
which, the processor automatically uses to update the value of the %esp register and
switch to the program's kernel stack in cases of exceptions and interrupts; or the
TSS.sp1 field, used by the OS for the stack switching during "fast" syscalls).
Relevant registers

The %idtr register holds the base address of the IDT.

The %gdtr register holds the base address of the GDT.

The %tr register points at the GDT, the TSS descriptor of the program that the
processor is running at each point in time.

The %cs register, which the processor automatically updates during privilege
level transitions to point to the current code segment descriptor in the GDT, and,
thus, the CPL is always implicitly derived from the lowest two bits of the %cs
register: CS = 0x08 is ring-0 (kernel mode) and CS = 0x1B is ring-3 (user mode).

Relevant instructions

The Igdt instruction is used to load the address of the GDT into the %gdtr
register (see this).

The lidt instruction is used to load the address of the IDT into the %idtr register
(see this).

The Itr instruction is used to load the address of the TSS descriptor from a GDT
selector to the %tr register (see this).

https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/idt.c#L84
https://elixir.bootlin.com/linux/v3.14/source/arch/x86/kernel/cpu/common.c#L91
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/processor.h#L405
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/processor.h#L316
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/processor.h#L315
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/desc.h#L209
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/include/asm/desc.h#L214
https://elixir.bootlin.com/linux/v3.14/source/arch/x86/include/asm/desc.h#L91

In summary: The start_kernel() function in init/main.c: (1.) sets up the per-processor GDT, and
loads its base address into the %gdtr register; (2.) sets up the processor's stacks for handling
critical exceptions; (3.) sets up and loads the TSS descriptor (required for stack switching during
exceptions) into the %ftr register, and allocates necessary interrupt/exception stacks; (4.)
configures processor fault handlers, and finally (5.) initializes hardware interrupt handlers (IRQ) in
the IDT, and loads the IDT into the %idtr register.

Linux kernel init/main.c:start_kernel() call graph

- start_kernel()
- setup_per_cpu_areas() / * Allocates and sets up per-processor GDT */
- switch_gdt and_percpu_base()
- load_direct gdt() / * Loads the original GDT address and size from the kernel's
structure into the processor's entry area */

- load qgdt()/ * Loads the GDT into the GDTR */

- native load gdt() /* Uses the Igdt instruction */

- trap_init() / * Sets up early exception and fault handlers */
- setup cpu entry areas() / * Allocates and sets up per-processor areas for exception
handling */
- setup_cpu_entry area() /* For each processor */

- percpu_setup_exception_stacks() / * Sets up the processor's stacks for
handling critical exceptions (such as non-maskable interrupts, double
faults, and machine check failures) that need dedicated stacks since
they can happen at any point */

- cpu_init _exception_handling() / * Loads TSS and prepares handlers for early
processor faults */
- set_tss desc() / * Allocates an entry in the processor's GDT to hold the TSS
descriptor */
- set_tss_desc()
- load_TR_desc()/ * Load the TSS descriptor */

- native load tr desc()/* Uses the Itr instruction */

- idt_setup_traps() /* Sets up the IDT with exception handlers */

- idt_setup from_table

- Uses INTG for interrupt descriptor gates of interrupts that don't
need their interrupt-specific kernel stack.

- Uses ISTG for interrupt descriptor gates of critical interrupts
that can't be ever masked, and since they may occur at any
point in time, must always run on a dedicated,
per-interrupt-specific, kernel stack.

- init_IRQ() / * Initializes interrupt handling (hardware IRQs) */
- x86_init.irgs.intr_init() /* Architecture-specific init */
- native_init_IRQ() /* Populates the IDT with IRQ entries */

- idt setup apic_and_irg_gates() / * APIC handlers */

- load_idt() / * Loads the IDT into IDTR */

- native_load_idt() / * Uses the lidt instruction */

https://elixir.bootlin.com/linux/v6.14-rc6/source/init/main.c#L896
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/setup_percpu.c#L116
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/cpu/common.c#L736
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/cpu/common.c#L715
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/desc.h#L112
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/desc.h#L209
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/traps.c#L1454
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/mm/cpu_entry_area.c#L263
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/mm/cpu_entry_area.c#L177
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/mm/cpu_entry_area.c#L139
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/cpu/common.c#L2190
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/desc.h#L191
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/desc.h#L181
https://elixir.bootlin.com/linux/v3.14/source/arch/x86/include/asm/desc.h#L91
https://elixir.bootlin.com/linux/v3.14/source/arch/x86/include/asm/desc.h#L91
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/idt.c#L229
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/idt.c#L194
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/idt.c#L85
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/idt.c#L86
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L75
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L92
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/irqinit.c#L95
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/idt.c#L284
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/include/asm/desc.h#L113
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/include/asm/desc.h#L214

- Q9: What are the steps involved in handling a legacy int 0x80 syscall in Linux x86?

int 0x80 / iret (known as "software interrupts")

The following description is for the x86_32, but the flow is similar for x86_64 as well.

The user program places the syscall number in the %eax register and the respective arguments in the

%ebx, %ecx, %edx, %esi, %edi, and %ebp registers, and executes the int 0x80 instruction from user

mode (ring-3).

The processor uses interrupt vector 0x80 in the IDT, which points at the syscall handler.

The processor checks if CPL (user mode: ring-3) <= DPL (ring-3 for vector #128), and raises a

general-protection exception if the CPL is greater than the DPL value specified in the IDT for the selected

gate descriptor.

Since the selected descriptor (i.e., the syscall handler) targets a kernel code segment (__KERNEL_CS,

ring-0), the processor performs a privilege-level stack switch

- Saves (internally) the values of the %ss, %esp, %eflags, %cs, and %eip registers.

- Updates the values of %esp and %ss registers to the address of the task's kernel stack address for
interrupt handling, stored in the sp0 field of the TSS pointed to by the %ftr register in the GDT.

- Pushes the temporarily saved (internally) values of the %ss, %esp, eflags, %cs, and %eip registers
onto the new stack.

- Loads the segment selector for the new code segment and the new instruction pointer (from the
interrupt or trap gate) into the %cs and %eip registers, respectively.

- Clears the IF flag in the %eflags register, effectively disabling maskable interrupts.

- Begins executing the entry INT80_32 handler at the new privilege level (updated %cs).

The entry _INT80_32 handler does the following

- Saves all general-purpose registers in the task's kernel stack, and uses "switch_stacks=1" indicating
that the execution must also be saved in the dedicated kernel stack for handling critical exceptions
(such as non-maskable interrupts) that may occur at any time, and require their dedicated stack to be
already populated.

- Executes the requested syscall handler (whose number is held in the %eax register).

- Switches back to the entry's kernel stack in case a nested exception had occurred while handling the
syscall.

- Restores general-purpose registers from the kernel stack.

- Uses the iret instruction, which pops values from the stack to restore the %eflags, %cs, and %eip
registers—re-enabling maskable interrupts and resuming execution at the previous privilege level and
point—and if a stack switch occurred, also restores the values of the %ss and %esp registers,
switching back to the user-space stack.

For more details, see: “Call and Return Operation for Interrupt or Exception Handling Procedures,” Intel

Software Developer's Manual, Vol.1, Sec. 6.5.1.

Overall: The above is considered the legacy "slow path" (~600 processor cycles; see this), and the faster
alternative (~70 processor cycles; see this) for making system calls is the sysenter-sysexit (x86_32) /
syscall-sysret (x86_64) mechanisms, described next.

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/include/asm/irq_vectors.h#L38
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/idt.c#L126
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/idt.c#L126
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/idt.c#L126
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/segment.h#L213
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L933
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L205
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L366
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L962
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://x86.lol/generic/2019/07/04/kernel-entry.html
https://x86.lol/generic/2019/07/04/kernel-entry.html

- Q10: What are the steps involved in handling a fast syscall in Linux x86?

- Around the Pentium-4 era (2000), processors became very deeply pipelined (e.g., from ~10 to ~20
stages), and therefore pipeline stalls/flushes became very expensive.

- A typical int 0x80 system call took about twice as long on Pentium 4 compared to Pentium 3 because
the IDT entry might have not been in the cache, which would cause a cache miss and a pipeline stall.

- Since syscalls are common enough, caching the syscall entry point in a special processor register to
make the common path fast, instead of looking it up in the IDT, is worth the transistor budget.

- The preferred method for making syscalls in x86 is the sysenter / sysexit (x86_32) or the syscall /
sysreturn (x86_64) instruction pairs.

- These methods depend on a set of Model-Specific Registers (MSRs) configured during kernel
initialization to define the associated kernel context and the syscall entry point.

- The 1A32_SYSENTER_CS holds the kernel code segment selector indicating the kernel
privilege level (ring-0) for sysenter, initialized here.

- The IA32_SYSENTER_EIP holds the %eip to be used for sysenter—that is, the kernel entry
point for sysenter, initialized here.

- The IA32_SYSENTER_ESP holds the stack pointer. (Unused since stack switching is
software-based in sysenter.)

- The user program places the syscall number in the %eax register, and the respective arguments in the
%ebx, %ecx, %edx, %esi, %edi, and %ebp registers, and executes the sysenter instruction (x86_32)
from user mode (ring-3).

- The processor automatically

- Loads the value of the IA32_SYSENTER_CS register into the %cs register, effectively switching
to ring-0.

- Loads the value of the IA32_ SYSENTER ESP register into the %esp register—will be
overwritten, since stack switching is software-based.

- Loads the value of the I1A32_SYSENTER_EIP register, which holds the address of the
entry_ SYSENTER 32, into the %eip register and jumps at it.

- The entry SYSENTER_32 handler does the following

- Updates atomically the value of the %esp register to the address of the task's kernel stack
stored in the sp1 field of the TSS. (The TSS.sp1 field is updated by the OS during switching
from one program to another so that it always points at the current program's kernel trampoline
stack.) [Q: Why not use TSS.sp07?]

- Pushes placeholder register values into the stack to emulate an interrupt frame for later sysexit
return, and saves all general-purpose registers to the stack using the SAVE_ALL macro to.

- Disables maskable interrupts.

- Executes the requested syscall handler.

- Prepares for the sysexit instruction by manually popping the stack and setting the values for the
%ebx, Y%esi, %edi, %ebp, and %esp registers.

- Executes the sti instruction (set interrupt flag) to reenable maskable interrupts.

- Executes the sysexit instruction, which performs a fast transition back to user mode (ring-3)
using values from %ecx (return %eip) and %edx (return %esp).

- Unlike the int 0x80 syscall mechanism, the sysenter syscall mechanism (i) does not perform interrupt
vector lookup via the IDT, (ii) does not incur the overhead of a full privilege level switch via the gate
descriptor and the task segment, and (iii) does not trigger a hardware-based task switch. (See
instruction tables microbenchmarks.)

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/cpu/common.c#L1943
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/cpu/common.c#L1941
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/kernel/cpu/common.c#L1943
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L786
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L800
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/process_32.c#L155
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/switch_to.h#L67
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L802
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L205
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L830
https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L835
https://www.agner.org/optimize/instruction_tables.pdf

- Q11: How are interrupts and exceptions handled in Linux x86?

The OS uses the same dispatching mechanism for both interrupts and exceptions.

The main difference is that exceptions are synchronous events that are being raised by the processor
when an "exceptional" condition is identified while executing instructions; whereas, interrupts are
asynchronous events that can appear at any point in time, regardless of the execution state the
processor is in. Therefore, interrupts must be handled on instruction boundaries (i.e., at the end of the
execution pipeline) to avoid corrupting the processor's internal state by interrupting its execution pipeline
mid-execution, in unanticipated ways.

The Interrupt Stack Table (IST) in x86 architecture allows specifying different stacks for different
interrupts. (Up to 7 IST entries per processor.)

Execution pipeline

while (get next instr)}
HPF exception? IF: Fetch instr. at IP
?__ ID: Decode instr.
______________ EX: Execute instr.
MEM: Memory Access
WB: Write Back to Registers

if (Interrupt) {
#Intr. interrupt? Save context
___________ Get #Intr.

Instruction
boundary

Handling interrupts

- The interrupt controller (e.g., the PIC) informs the CPU that there is a pending interrupt with a
specific interrupt vector number.
- Unless maskable interrupts are disabled, the processor automatically
- Uses the vector number to index the respective gate descriptor in the IDT.
- If the interrupt requires a privilege level transition (i.e., DPL of the target code segment
< of the CPL in the %cs register), a stack switch occurs

- The processor saves (internally) the values of the %ss, %esp, %eflags, %cs, and
%eip registers.

- Updates the values of %esp and %ss registers to the address of the task's kernel
stack address for interrupt handling, stored in the sp0 field of the TSS pointed to
by the %tr register in the GDT.

- Pushes the temporarily saved (internally) values of the %ss, %esp, eflags, %cs,
and %eip registers onto the new stack.

- If a privilege level transition is not required

- The processor only pushes the values of the %ss, %esp, %eflags, %cs, and

Y%eip registers onto the new stack.

https://elixir.bootlin.com/linux/v3.14/source/arch/x86/kernel/cpu/common.c#L1117
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/idt.c#L84

- Pushes an error code on the stack (if applicable).

- Loads the segment selector for the new code segment and the new instruction pointer
(from the interrupt or trap gate) into the %cs and %eip registers, respectively.

- Clears the IF flag in the %eflags register to disable maskable interrupts.

- Loads the ISR handler’s address (offset) from the gate descriptor into the %eip register,
effectively transferring control to the ISR handler

- The ISR handler

- Saves the current execution state (i.e., registers and flags) to the stack.

- Executes the respective handler.

- Restores general-purpose registers from the stack.

- Uses the iret instruction, which pops values from the stack to restore the %eflags, %cs,
and %eip registers—re-enabling maskable interrupts and resuming execution at the
previous privilege level and point—and if a stack switch occurred, also restores the values
of the %ss and %esp registers, switching back to the user-space stack.

Handling exceptions
- The difference between interrupts and exceptions lies in their origin: interrupts originate from the
hardware, while exceptions are caused by software errors or exceptional conditions within the
running program.
- Both mechanisms rely on the same general flow, utilizing the IDT and processor state
saving/restoring mechanisms.

: How are interrupts, exceptions, and syscalls handled in ARM?
The ARM architecture manages interrupts, exceptions, and system calls using a hierarchical exception
model with Exception Vector Tables (EVTs) and Exception Levels (EL) registers.
CurrentEL: Holds the current exception level (EL)—i.e., the current privilege level.

- aarch32 has two exception levels: ELO is user mode and EL1 is kernel mode.

- aarch64 has two additional exception levels, that is EL0—4. [Q: what for?]
Exception Syndrome Register (ESR_ELn): Holds the cause of an exception (e.g., syscall, IRQ, etc.)
that occurred in ELn. (The ESR_ELDO register is used to check the cause of an exception in user mode.)
Saved Program Status Register (SPSR_ELn): Holds the processor's status when transitioning from
one exception level to another. That is, the SPSR_EL1 is used to save state when the processor
switches from one privilege level to another.
Current Program Status Register (CPSR): Holds all the status and control bits for the processor, akin
to the PSTATE register in aarch64, or to the eflags register in x86.
Exception Link Register (ELR_ELn): Holds the address of the instruction to return to after handling an
exception in ELn. That is, the ELR_EL1 register holds the return address when switching to kernel
mode.
There is neither a VBAR_ELO nor a SPSR_ELO register, since no exception is to be handled in user
mode (ELO).
The following description is for aarch32, but the flow is similar for aarch64 as well.
When an exception (including an interrupt or syscall) occurs, the processor

- Saves its state and return address in the SPSR_ELn and ELR_ELn registers.

- Updates the CurrentEL field in the state register to the new privilege level.

- Jump to the appropriate entry in the table pointed to by the VBAR_ELn register.
The user program places the syscall number in the %r7 register, and the registers %r0—r6 are used for
argument passing.
The user program executes the svc instruction from user mode (EL-0).

10

https://elixir.bootlin.com/linux/v6.14-rc3/source/arch/x86/entry/entry_32.S#L962

The svc instruction raises an exception, causing the processor to automatically
- Switch from EL-0 (user mode) to EL-1 (kernel mode) by updating the value of the CurrentEL
register.
- Save its context in the SPSR_EL1 and LR_EL1 registers.
- Uses the exception number in the ESR_ELn register to find the respective handler in the vector
table indexed by the VBAR_L1 register.
- Invoke the handler (e.g., in this case, the requested syscall handler).
The handler checks the syscall number in the %r7 register, extracts the args from the %r0-r6 registers,
and invokes the appropriate kernel syscall handler.
Upon completion, the kernel uses the eret instruction to
- Restore the %pc and state registers from ELR_EL1 and SPSR_EL1.
- Switch back the value of the currentEL register to ELO (user mode).

How is the validity of user-provided data assessed by the Linux kernel?

The Linux kernel maps its physical memory into the virtual address space of each running user
program.
This helps keep the TLB entries "hot," and reduces the need to flush the TLB on every transition
between user and kernel mode.
Since user programs interact with the kernel by passing data during system calls, and user programs
cannot be trusted
- Before reading from or writing to user memory, the kernel verifies that the user program has the
appropriate permissions.
- This prevents user programs from tricking the kernel into accessing memory they shouldn’t be
able to.
- The kernel provides controlled error handling, returning errors like EFAULT when an invalid
memory region is accessed as a result of a user program providing an invalid address (e.g.,
unmapped memory, swapped-out pages, or zero pages).

From kernel to user space
- long copy to user(...);
- int set user(...);

From user to kernel space

- long copy from user(...);
- int get user(...);

11

