
-​ Q1: How do processes communicate with each other?

-​ We've invested a lot so far in the fact of life that processes are a domain of isolation.
-​ How do we support communication between processes, if needed? That is, how do we cross the

domain of isolation from one process to another?
-​ Cooperation between processes requires communication, which is called Interprocess-Communication

(IPC), and is mediated by the OS.
-​ There are two core models for IPC: Synchronous (e.g., pipes) and asynchronous (e.g., signals)

communications.

-​ Q2: What are the most common asynchronous POSIX IPC mechanisms?

-​ Asynchronous communication means that the recipient (process) of a message is not necessarily waiting
for a message to be delivered to it.

-​ The OS needs to support an asynchronous IPC mechanism that will allow the delivery of messages in a
manner that will not irreversibly corrupt the flow of executions of an "unprepared" recipient.

-​ POSIX signals is the most common mechanism for asynchronous IPC.
-​ The syscall kill(pid_t pid, int signo) is used to ask the kernel to deliver a signal from one

process to another
-​ A "signal" is a short message, identified by its signal number—typically, just a small integer.
-​ There is a set of 32 predefined POSIX signals (e.g., 9: SIGKILL; 11: SIGSEGV; and others).

Overview of delivering a POSIX signal

1

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

-​ Q3: What are the most common synchronous POSIX IPC mechanisms?

-​ Synchronous communication means that the recipient (process) is waiting (blocked) for a message to
be delivered to it.

-​ Contrary to asynchronous IPC, the target recipient is, in a sense, to be assumed "prepared" for a
message to be delivered to it.

-​ POSIX pipes (unnamed):
-​ Syscall to create a synchronous, unidirectional communication channel between two

processes: pipe (int fds[2]).
-​ Returns two file descriptors in the fds buffer.

-​ fds[0]: The read end of the pipe.
-​ fds[1]: The write end of the pipe.

-​ Operations on pipes: read/ write/ close (akin to files, discussed later).
-​ Read for data on fds[0] will block (wait) until data is written to fds[1], and will return 0 if

no more data is available and fds[1] is closed.
-​ Write on fds[1] will lead to a SIGPIPE signal delivered to the process trying to write on

a pipe whose read end (fds[0]) is closed.
-​ A problem with unnamed pipes is that the channel can only be established between

descendant processes: the parent creates the fds[] buffer and invokes fork; the child "inherits"
copied fds in its PCB. [Q: System-wide visible pipes? mkfifo; Q: Bidirectional channel? sockets.]

Overview of delivering a message via unnamed POSIX pipes

2

-​ POSIX shared memory
-​ Pipe-based communication is mediated by the OS, and user programs have little responsibility,

except for waiting for a message to be delivered.
-​ But it is unnecessarily slow: two copies (in and out) are required on every transaction.
-​ Processes can avoid this overhead, and ask the kernel to point them directly to a memory

region that is shared with other processes.
-​ syscall to create a shared memory segment: uid = shmget(key,…).
-​ syscall to attach a shared memory segment to the address space of the calling process:

shmat(int uid,...).
-​ Zero unnecessary copies

-​ New powers ⇒ New responsibilities
-​ Synchronization ⇒ More on this drama later

Overview of delivering a message via POSIX shared memory

3

