- Q1: How do processes communicate with each other?

- We've invested a lot so far in the fact of life that processes are a domain of isolation.

- How do we support communication between processes, if needed? That is, how do we cross the
domain of isolation from one process to another?

- Cooperation between processes requires communication, which is called Interprocess-Communication
(IPC), and is mediated by the OS.

- There are two core models for IPC: Synchronous (e.g., pipes) and asynchronous (e.g., signals)
communications.

- Q2: What are the most common asynchronous POSIX IPC mechanisms?
- Asynchronous communication means that the recipient (process) of a message is not necessarily waiting
for a message to be delivered to it.
- The OS needs to support an asynchronous IPC mechanism that will allow the delivery of messages in a

manner that will not irreversibly corrupt the flow of executions of an "unprepared” recipient.
- POSIX signals is the most common mechanism for asynchronous IPC.

- The syscall kill(pid_t pid, int signo) is used to ask the kernel to deliver a signal from one
process to another

- A'signal" is a short message, identified by its signal number—typically, just a small integer.

- There is a set of 32 predefined POSIX signals (e.g., 9: SIGKILL; 11: SIGSEGV; and others).

Overview of delivering a POSIX signal

@ Process A

asks the OS to

deliver signal to
process C

text
instruction
instruction

text
instruction .
. . %ip' (before
struct
instru mn4_sig. very)

instruction q— ogip (start of

instruction signal handler)

@ The OS has

#signo: argument for changed the top of
function at %ip process’ B stack

%esp —»

Return address: %ip"
Saved registers

® ®

The OS keeps track The OS selects
of all pending signals process B to be
for each process scheduled in



https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

- Q3: What are the most common synchronous POSIX IPC mechanisms?

- Synchronous communication means that the recipient (process) is waiting (blocked) for a message to
be delivered to it.

- Contrary to asynchronous IPC, the target recipient is, in a sense, to be assumed "prepared" for a
message to be delivered to it.
- POSIX pipes (unnamed):
- Syscall to create a synchronous, unidirectional communication channel between two
processes: pipe (int fds[2]).
- Returns two file descriptors in the fds buffer.
- fds[0]: The read end of the pipe.
- fds[1]: The write end of the pipe.
- Operations on pipes: read/ write/ close (akin to files, discussed later).
- Read for data on fds[0] will block (wait) until data is written to fds[1], and will return O if
no more data is available and fds[1] is closed.
- Write on fds[1] will lead to a SIGPIPE signal delivered to the process trying to write on
a pipe whose read end (fds[0]) is closed.
- A problem with unnamed pipes is that the channel can only be established between
descendant processes: the parent creates the fds[] buffer and invokes fork; the child "inherits"
copied fds in its PCB. [Q: System-wide visible pipes? mkfifo; Q: Bidirectional channel? sockets.]

vervie deliveri e e _vi ed POSIX pipe

_ Physical memory segments _

Fext text
instruction instruction
instruction instruction

= @ Process A -

asks the OS to
write some data
from its heap
to the pipe

/

@ Process B

asks the OS5 to wait
until data is available
for read in the pipe

/

copy-out

copy-in




- POSIX shared memory

Pipe-based communication is mediated by the OS, and user programs have little responsibility,
except for waiting for a message to be delivered.
But it is unnecessarily slow: two copies (in and out) are required on every transaction.
Processes can avoid this overhead, and ask the kernel to point them directly to a memory
region that is shared with other processes.
syscall to create a shared memory segment: uid = shmget(key,...).
syscall to attach a shared memory segment to the address space of the calling process:
shmat(int uid,...).
Zero unnecessary copies

- New powers = New responsibilities

- Synchronization = More on this drama later

Overview of delivering a message via POSIX shared memory

_ Physical memory segments _

fext
instruction
instruction

text
instruction
instruction

@ Process A

asks the OS to
create a shared
memory segment

@ Process A

asks the OS to
attach
the shared memory
segment to its
addr. space

\

@ Process B

asks the 05 to
attach
the shared memory
segment fo ifs
addr. space

—




