
​-​ ​Q1​​: What is virtual memory?​
​-​ ​Virtual memory is a layer of abstraction that translates virtual addresses into physical addresses.​

​-​ ​Virtual​​addresses​​is​​the​​language​​via​​which​​programms​​and​​processes​​talk​​to​​the​​processor​
​about memory.​

​-​ ​Physical​ ​addresses​ ​is​ ​the​ ​language​ ​via​ ​which​ ​the​ ​actual​ ​contents​ ​of​ ​memory​ ​(i.e.,​ ​RAM​
​DIMMs) are accessed by the processsor for read or write via the memory bus​

​-​ ​This​ ​translation​ ​is​ ​managed​ ​by​ ​the​ ​OS​ ​and​ ​is​ ​performed​ ​with​ ​the​ ​aid​ ​of​ ​a​ ​specific​ ​hardware​
​component, namely the Memory Management Unit (MMU).​

​-​ ​The​ ​OS​ ​kernel​ ​has​ ​the​ ​privileges​ ​to​ ​turn​ ​the​ ​MMU​ ​on​ ​and​ ​off:​ ​when​ ​the​​MMU​​is​​on,​​any​​address​
​produced​ ​by​ ​the​ ​processor​ ​is​ ​virtual​ ​and​ ​passes​ ​through​ ​the​ ​MMU​ ​first,​ ​before​ ​being​ ​put​ ​on​ ​the​
​memory​​bus,​​in​​order​​to​​be​​translated​​into​​the​​corresponding​​physical​​memory​​address.​​By​​contrast,​
​when the MMU is off, all addresses are directly treated as physical.​

​1​

​-​ ​In​ ​most​ ​modern​ ​commercial​ ​OSes,​​user​​programs​​can​​only​​talk​​virtual​​addresses​​to​​the​​processor,​
​because​​the​​MMU​​is​​only​​off​​during​​early​​system​​booting;​​and​​user​​programs​​can​​only​​execute​​after​
​the booting process is completed and the MMU is on.​

​-​ ​What​​this​​really​​means​​is​​that​​the​​way​​programmers​​imagine​​their​​programs​​will​​interact​​with​​memory​
​is, in fact, just an illusion built on top of a transparent layer of indirection.​

​-​ ​For​​example,​​the​​following​​program​​run​​twice,​​stores​​a​​value​​to​​the​​variable​​"i"​​seemingly​​at​​the​​same​
​memory​​address,​​but​​the​​contents​​are​​different​​because​​each​​process​​gets​​its​​own​​mapping​​of​​virtual​
​to physical memory addresses.​

​-​ ​Q2​​: Why is virtual memory necessary?​
​-​ ​Fault​​Isolation​​.​​Confinement​​and​​separation​​of​​concerns​​between​​processes​​(and​​users),​​such​​that​

​anything​ ​that​ ​goes​ ​wrong​ ​in​ ​the​ ​address​ ​space​ ​of​ ​one​ ​process​ ​does​ ​not​ ​affect​ ​any​​other​​process​
​present in the system.​

​-​ ​Illusion​​of​​continuous​​memory​​.​​Programs​​are​​written,​​compiled,​​assembled,​​linked,​​and​​loaded​​as​
​if​ ​they​ ​have/are​ ​going​ ​to​ ​have​ ​access​ ​to​ ​abundant​ ​continuous​ ​memory;​ ​even​ ​though,​ ​in​ ​reality,​
​physical memory is limited in size and is allocated on demand in fragmented physical blocks.​

​-​ ​Frugal​ ​use​ ​of​ ​resources​​.​​Reduce​​the​​memory​​footprint​​of​​large​​programs​​by​​avoiding​​allocating​​a​
​physical​ ​memory​ ​range,​ ​until​ ​necessary​ ​(demand-paging),​ ​and​ ​make​ ​read-only​ ​parts​ ​of​ ​common​
​code,​​that​​is​​shared​​across​​many​​processes​​(e.g.,​​shared​​libraries),​​available​​with​​only​​one​​physical​
​replica until a write occurs (Copy-On-Write).​

​-​ ​Performant​​use​​of​​resources​​.​​Leverage​​temporal​​locality​​code​​property​​(addresses​​that​​have​​been​
​recently​ ​referenced​ ​are​ ​likely​ ​to​ ​be​ ​references​ ​again​ ​soon)​ ​and​ ​spatial​ ​locality​ ​code​ ​property​
​(addresses​​that​​are​​close​​to​​the​​regime​​of​​recently​​referenced​​addresses​​are​​likely​​to​​be​​referenced​
​in​​the​​near​​future)​​to​​enable​​programs​​to​​run​​almost​​at​​the​​speed​​of​​main​​memory,​​or​​even​​faster,​​at​
​the​​speed​​of​​CPU​​caches,​​while​​regularly​​accessing​​slower,​​but​​of​​larger​​capacity,​​persistent​​storage​
​devices​ ​(such​ ​as​ ​HDDs​ ​and​ ​SSDs)​ ​to​ ​offload​ ​parts​ ​of​ ​code​ ​that​​are​​not​​in​​imminent​​use.​​(CoW​​is​
​particularly​ ​important​ ​for​ ​POSIX-compliant​ ​OSes​ ​because​ ​it​ ​significantly​ ​speeds​ ​up​ ​the​ ​starting​ ​of​
​new​​processes​​via​​fork,​​by​​duplicating​​address​​spaces​​rapidly​​without​​actually​​copying​​the​​complete​
​physical memory ranges until necessary.)​

​2​

​-​ ​Q3​​: How is virtual memory implemented?​
​-​ ​Although virtual memory management is conceptually simple and everything revolves around an address​

​translation index that maps virtual to physical addresses, its implementation is quite complex.​
​-​ ​In fact, it is likely the most complex of all kernel subsystems, as it requires intimate cooperation between​

​architecture-dependent software and hardware: "We've rewritten the VM several times in the last ten years,​
​and I expect it will be changed several more times in the next few years. Within five years, we'll almost​
​certainly have to make the current three-level page tables be four levels, etc." —Linus Torvald, 2001.​

​-​ ​We will use the following questions to help navigate the basic design and implementation decisions​
​regarding the memory management kernel subsystem.​

​-​ ​A.) What are the entries of the address translation index?​​Depending on the virtual memory​
​management mechanism implemented, the OS maintains in each process's PCB either a​
​segmentation table (segmentation), or a page table (paging), or a multilevel page table (multilevel​
​paging), and so on.​

​-​ ​B.) How are the entries of the address translation index used?​​Every time the processor needs​
​to read or write data from or to a main memory address as a result of executing an instruction, the​
​virtual address produced by the processor is first passed to the MMU, which, in turn, needs to look​
​up the translation index in order to put the respective physical address on the system bus. Since​
​address translations are extremely often and the overhead of a single main memory reference​
​(~100 processor cycles) to look up the translation index from main memory on every address​
​translation is impractical, a small portion of the index is cached closer to the processor in a special​
​hardware component, called the Translation Look-aside Buffer (TLB). The TLB has a very low​
​access time (~1 cycle) and helps so that most translations occur inside the CPU core, without the​
​MMU having to look​​up the in-main-memory translation​​index.​

​-​ ​C.1.) How are the entries of the address translation index allocated?​​New entries are added to​
​the translation index on demand whenever a translation is needed. Specifically, the MMU first​
​checks the TLB, and if a valid translation exists, it directly produces the respective physical​
​address. Otherwise, if the translation is not present in the TLB or the TLB entry is invalidated [Q:​
​when will this happen?], the hardware automatically looks up the in-memory translation index and​
​updates the TLB. However, if the translation is either not present or invalid in the in-memory index​
​as well, then the hardware raises an exception (i.e., a page fault) to inform the OS that it needs to​
​allocate a new physical memory range and add the respective translation in the index.​

​-​ ​C.2.) When are the entries of the address translation index replaced?​​Although main memory​
​is quite large in size these days, there could still be cases when the available physical memory may​
​be fully occupied, and in order for a new physical range to be allocated an eviction (replacement) of​
​a used memory range needs to happen. In such low-memory situations, the replacement decision​
​regarding which in-use physical memory range to evicted in order to make the necessary space​
​available leverages the "converse" of temporal locality property: among all indexed and occupied​
​physical memory ranges, the Last Recently Used (LRU) ones are the least likely to be referenced​
​again soon; therefore, they are the best candidates to be evicted and swapped out (backed up to​
​secondary storage) to make fresh space available for allocation.​

​3​

​-​ ​Q4​​:​​What are the entries of the address translation index?​
​-​ ​Obviously, keeping a tuple <virtual address → physical address> for every address translation required for​

​every process in the system is impractical. Therefore, different ways to compress the required index size​
​(e.g., by batching together groups of "nearby" addresses) have been invented and used over the years.​

​-​ ​Segmentation​​: For each process in the system, there​​is a dedicated segmentation table, which holds the​
​base and limit physical address as well as the respective permissions for each segment of the process.​

​-​ ​Each time an address translation is needed, the higher bits of the virtual address (segment table​
​index) are used to index the process's segmentation table and the respective entries of the base​
​and size of the physical addresses as well as its permissions are retrieved.​

​-​ ​The lower bits of virtual address (offset) are, then, checked against the size of the physical memory​
​range, and the respective permissions are also asserted. If the offset is less than or equal to the​
​segment size and no permission violation occurs, then the offset bits are appended to the segment​
​bits, and the MMU puts the derived physical memory address on the system bus. Otherwise, a​
​hardware exception is raised informing the OS that it needs to take action.​

​-​ ​Segmentation allows each process's address space to be split into several independent chunks of​
​different sizes and permissions, allowing for some sharing and deduplication.​

​-​ ​Its main drawback is fragmentation: internal—when segments have mapped but unused parts​
​internally; and external—multiple available segments which are unusable due to unfit sizes.​

​4​

​-​ ​Paging:​​For each process in the system, there is a dedicated page table, which holds the base of the​
​respective physical address as well as the respective permissions. Unlike segmentation, where allocations​
​of arbitrary-sized physical ranges are allowed, in paging, the physical and virtual memory are divided into​
​fixed-sized chunks—called pages—and each segment can span multiple contiguous pages.​

​-​ ​Each time an address translation needs to occur, the​​high bits of virtual address (page table index)​
​are used to index the process's page table, and the respective entry of the physical page base as​
​well as its permissions are retrieved.​

​-​ ​The lower bits of the virtual address (offset) are, then, checked against the designated page size​
​and the respective permissions are also asserted. If the offset is less than or equal to the page size​
​and no permission violation occurs, the offset bits are appended to the lower bits of the page table​
​entry (physical frame numbers), and the MMU puts the derived physical memory address on the​
​system bus; otherwise, a hardware exception is raised informing the OS that it needs to take action.​

​-​ ​Example​​: Assume that the page table entries are 4​​bytes each (20 high-bits for the base of the​
​physical page and the remaining for permissions) and that the 2nd entry in the page table of proc A​
​is 0x0006A007. What is the translation of the 32-bit virtual addresses 0x00001402 produced by​
​proc A? Since 0x00001400 = [0000 0000 0000 0000 0001]​​20​ ​(index=1) and [0100 0000 0000]​​12​

​(offset), and the 2nd page table entry is 0x0006A007 = [0000 0000 0000 0110 1010]​​20​ ​(pfn = 106),​
​then the physical translation is [0000 0000 0000 0110 1010]​​20​ ​+ [0100 0000 0000]​​12​ ​= 0x0006A400.​

​-​ ​Because all pages are of the same (relatively small) size, external fragmentation is not an issue​
​with paging, and although internal fragmentation may still be an issue, it is not as prominent.​

​-​ ​The main limitation of single-level paging is the size of page tables for all processes in the system:​
​Assuming 32-bit virtual addresses, with 12 bits for the offset (4KB pages), and the 20 remaining bits​
​for the page table index with 4-byte page table entries ⇒ for 2^20 page table entries, the OS needs​
​to preallocate 4MB for the page table of each process in the system.​

​5​

​-​ ​Multilevel paging:​​Example of a two-level page table scheme with 4-byte page table entries, and 32-bit​
​virtual addresses, where the 12 lower bits are for the offset (4 KB page size), the 10 middle bits are for the​
​inner index, and the 10 higher bits are for the outer index bits. In this scheme, the outer table holds 2^10 =​
​1024 entries (4 KB total size), and each instance of the allocated inner page table also holds 2^10 entries (4​
​KB size). However, with a two-level paging scheme, the OS needs to preallocate one page for the outer​
​table and an additional inner entry, on demand, for each additional 4 MB of actively used physical memory.​

​-​ ​The 4-level Linux paging model:​​Assume a processor​​architecture with 64-bit virtual addresses and​
​48-bit physical addresses. (The virtual address space is restricted to only 48 bits, supporting 256 TB of total​
​addressable space; or it could be 52 bits, supporting 4 PB of total addressable space, to avoid the​
​unnecessary cost of manufacture.)​

​6​

​-​ ​All page table directories, including the PGD, and the allocated PUD, PMD, and PTE instances, are​
​held in physical pages that belong to the kernel's address space.​

​-​ ​Each page table directory holds 512 8-byte-long entries, and the specific structure of each entry as​
​well as the semantics of each entries' bits are architecture-dependent: overall, on each entry, the​
​higher bits are reserved or unused, the middle 20 bits comprise the pointer at the base of the​
​next-level index or at the base of the physical page (for the PTE), and the remaining lower bits are​
​used for permission checks.​

​-​ ​Given 8-byte-long entries, the PTE holds 512 entries which can address a 4KB page each (2 MB​
​reach); the PMD holds 512 PTE entries which can address 2 MB each (1 GB reach); the PUD holds​
​512 PMD entries that can address 1 GB each (512 GB reach); and, finally, the PGD (top level) holds​
​512 PUD entries that can address 512 GB each (256 TB total addressable virtual address space).​

​-​ ​For​​details​​on​​the​​format​​of​​the​​page​​table​​entries​​expected​​by​​hardware,​​as​​well​​as​​on​​what​​each​​bit​
​represents,​​see​​“Chapter​​5​​-​​Paging”​​in​​Intel​​Software​​Developer's​​Manual​​,​​the​​translation​​table​​entry​
​formats​​in ARM's manual, and the Linux kernel's page​​tables definitions for​​x86​​and​​aarch64​​.​

​7​

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Translation-tables/Translation-table-entry-formats?lang=en
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Translation-tables/Translation-table-entry-formats?lang=en
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/include/asm/pgtable_64_types.h#L21
https://elixir.bootlin.com/linux/v6.16/source/arch/arm64/include/asm/memory.h

​8​

https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Translation-tables/Translation-table-entry-formats?lang=en

​-​ ​Q5​​:​​How are the entries of the address translation index used?​
​-​ ​Every time the processor needs to read or write data from or to a memory address as a result of executing​

​an instruction, the virtual address produced by the processor is first passed to the MMU, which needs to​
​look up the translation index before putting the respective physical address on the system bus.​

​-​ ​Since address translations are extremely frequent and the overhead of a main memory reference (~100​
​processor cycles) to look up the translation index on every address translation would be impractical, a​
​fragment of the most recent address translations is cached closer to the processor in a special hardware​
​component, called the Translation Lookaside Buffer (TLB), which has very low access time (~1 cycle).​

​-​ ​The TLB entries are of the format <valid bit, context id, permissions, physical page number>, and the TLB​
​typically consists of a multi-level hierarchy (e.g., the 1st level is smaller and split into an i-TLB and a d-TLB,​
​and the 2nd level is larger and caches address translations of both types).​

​-​ ​Due to temporal locality, the TLB typically has a high hit rate (~99% on general workloads) and, thus, most​
​address translations do not require the MMU to reference the translation index in main memory.​

​-​ ​As​​long​​as​​the​​OS​​sets​​up​​the​​page​​table​​entries​​in​​main​​memory,​​in​​the​​case​​of​​hardware-managed​
​TLBs,​ ​the​ ​hardware​ ​will​ ​transparently​​return​​the​​corresponding​​address​​translation​​on​​a​​TLB​​hit,​​or​
​will​​walk​​the​​translation​​index​​in​​main​​memory​​on​​a​​TLB​​miss,​​or​​will​​raise​​a​​hardware​​exception​​on​
​an​​invalid​​memory​​reference.​​The​​only​​responsibility​​of​​the​​OS​​is​​to​​invalidate​​the​​TLB​​entries​​every​
​time​ ​an​ ​address​ ​space​ ​change​ ​(context​ ​switch)​ ​occurs,​ ​to​ ​prevent​ ​stale​ ​mappings​​of​​one​​process​
​from spilling into the address space of another process.​

​-​ ​Modern​ ​CPUs​ ​use​ ​Address​ ​Space​ ​Identifiers​ ​(ASIDs)​ ​and​ ​Process​ ​Context​ ​IDs​ ​(PCIDs)​​to​​avoid​
​complete​​TLB​​flushes:​​on​​a​​context​​switch,​​the​​OS​​updates​​the​​current​​ASID/PCID,​​and​​the​​hardware​
​ignores entries from other processes. (See​​this​​for​​TLB-related Linux kernel APIs.)​

​9​

https://www.kernel.org/doc/html/v4.19/core-api/cachetlb.html

​-​ ​Q6​​:​​How are new entries allocated in the address translation index?​
​-​ ​New entries are allocated into the translation index lazily / on demand only when the respective translation​

​is looked up (demand-paging); and even after a translation entry slot has been added to the index, the entry​
​itself may remain marked "not present," if the​​OS​​can defer allocating the backing physical page.​

​-​ ​Assume that a process requests 1MB for its heap—why occupy 256 physical pages before they are​
​actually used? Just add a memory range in the allowed mappings of the process's PCB to indicate​
​that the translation is legal, and defer the rest (including allocating a translation entry and potentially​
​allocating the physical page backing the translation) for later.​

​-​ ​Assume a process requests a 1MB zeroed-out buffer—while it only performs reads, why occupy​
​256 physical pages if only one zeroed-out physical page can back up all translations? Allocate all​
​the translation entries such that they all point to the same zeroed-out physical page and mark the​
​entry's permissions "read-only". (If a write-access occurs, then the OS will update the translation.)​

​-​ ​Assume a child process is created by fork and, according to POSIX, the OS ought to duplicate the​
​parent's address space on the child—why copying the actual physical pages from parent to the​
​child, instead of allocating the child translation entries such that they point to the parent's physical​
​pages, until a write access occurs on any of the two sides (Copy-on-Write). [Q: Useful? fork+exec.]​

​-​ ​The above functionality (and much more) is implemented by the OS in the page fault handler, which is​
​invoked every time a page fault exception is raised by the hardware because an appropriate translation​
​cannot be found either in the TLB entries or in the in-memory translation index.​

​10​

​-​ ​To manage the translation index and implement the above functionality, the OS needs to maintain two​
​additional data structures: One per-process data structure that keeps track of each process's allowed​
​mappings and the respective permissions, and one global data structure that keeps track of the status of​
​physical pages that are globally available for allocations, or not.​

​-​ ​The user must be able to control what mappings (i.e., what ranges of virtual addresses) are allowed​
​for their processes and with what permissions, at page granularity, and the OS must, in turn, add​
​these mappings to the respective process's PCB and enforce the appropriate permission checks​
​when each translation occurs. (The most relevant POSIX syscalls are mmap and mmprotect.)​

​-​ ​The data structure that keeps track of the state of physical pages is usually managed entirely​
​internally by the OS, and the user has no visibility into it.​

​-​ ​Page fault handling.​​Since every address translation​​may involve hardware and software​
​collaboration, on every page fault, the exception handler needs to know (1) what the faulting (virtual)​
​address was, and (2) what the processor's intention was when it generated the virtual address.​

​-​ ​The​ ​faulting​ ​virtual​ ​address​ ​is​ ​passed​ ​by​ ​the​ ​hardware​ ​to​ ​the​ ​software​ ​via​ ​a​ ​privileged​
​register (e.g., %cr2 in x86) whenever a page fault exception occurs.​

​-​ ​The​​page​​fault​​handler​​validates​​that​​the​​faulting​​virtual​​address​​falls​​within​​a​​valid​​range​​that​
​belongs to some page of a segment of the current process; otherwise, a SIGSEGV is raised.​

​-​ ​The​​page​​fault​​handler​​uses​​the​​exception's​​error​​code​​(automatically​​pushed​​by​​hardware​​to​
​the​​expedition​​handler's​​stack​​every​​time​​an​​exception​​occurs)​​to​​infer​​what​​the​​processor's​
​intended​​memory​​access​​was​​(e.g.,​​read​​or​​write​​data​​from​​an​​address,​​or​​read​​an​​instruction​
​as​ ​part​ ​of​ ​its​ ​instruction​ ​fetching​ ​pipeline​​stage),​​and​​compares​​it​​either​​to​​the​​permissions​
​registered​ ​in​ ​the​ ​respective​ ​PCB​ ​structure​ ​keeping​ ​track​ ​of​ ​the​ ​process's​ ​mappings​ ​(if​ ​no​
​translation​ ​entry​ ​yet​ ​exists)​ ​or​ ​to​ ​the​ ​permission​ ​bits​ ​of​ ​the​ ​translation​ ​entry​ ​(if​ ​an​​entry​​is​
​populated in the process's translation index).​

​-​ ​If​ ​the​ ​translation​ ​entry​ ​is​ ​successfully​ ​updated​ ​(minor/major/CoW​ ​pagefault)—that​ ​is,​ ​the​
​faulting condition is hopefully fixed—the "faulting" instruction is then reexecuted.​

​Read vs write page faults, and OS "laziness"​

​11​

​-​ ​Physical​ ​page​ ​frame​ ​eviction​ ​and​ ​replacement.​ ​Since​ ​physical​ ​memory​ ​is​ ​finite,​​there​​could​​be​
​cases​ ​where​ ​the​ ​page​ ​fault​ ​handler​ ​may​ ​need​ ​to​ ​allocate​ ​a​ ​translation​ ​entry,​ ​but​ ​no​ ​free​ ​physical​
​page​​frame​​is​​available.​​Therefore,​​the​​OS​​proactively​​tracks​​physical​​page​​frame​​usage​​to​​be​​able​​to​
​identify physical pages that are "good" candidates to be reclaimed in low-memory situations​

​-​ ​Last​​Recently​​Used​​(​​LRU​​)​​policy​​:​​To​​identify​​which​​physical​​pages​​are​​"good"​​candidates​​to​
​evict​​in​​a​​low-memory​​situation,​​the​​OS​​leverages​​an​​"inverse"​​temporal​​locality​​policy​​based​
​on the premise that the Last Recently Used (LRU) page is likely the best candidate to evict.​

​-​ ​Approximate​ ​LRU:​ ​Pure​ ​LRU​ ​is​ ​expensive​ ​to​ ​implement​ ​in​ ​software,​ ​and​ ​instead,​ ​an​
​alternative​ ​approximate​ ​LRU​ ​version,​ ​known​ ​as​ ​the​ ​CLOCK​ ​algorithm,​ ​is​ ​implemented​ ​in​
​practice with minimal hardware support.​

​-​ ​Each​ ​entry​ ​in​ ​the​ ​address​ ​translation​ ​index​ ​has​ ​a​ ​"referenced"​ ​bit,​ ​which​ ​is​
​automatically set by the MMU every time the respective translation is accessed.​

​-​ ​The​ ​OS​ ​periodically​ ​sweeps​ ​through​ ​the​ ​entries​ ​of​ ​the​ ​translation​ ​index​ ​of​ ​all​ ​(or​
​most) processes and resets the respective "accessed" bits.​

​-​ ​With​​that,​​translation​​entries​​whose​​"accessed"​​bits​​are​​off​​will​​be​​the​​ones​​accessed​
​less​ ​recently​ ​compared​ ​to​ ​those​ ​whose​ ​accessed​ ​bits​ ​are​ ​on,​ ​and​ ​the​ ​respective​
​physical page frames will be preferred for reclaiming.​

​-​ ​Reclaiming​ ​decision:​ ​The​ ​decision​ ​for​ ​reclaiming​ ​physical​​pages​​is​​made​​separately​​based​
​on​ ​the​ ​type​ ​of​ ​occupied​ ​pages,​ ​which​ ​distinguishes​ ​between​ ​file-backed​ ​pages​ ​(i.e.,​ ​data​
​from​​actual​​file​​blocks)​​and​​anonymous​​pages​​without​​file-backed​​content​​(i.e.,​​for​​heap​​and​
​stack segments of resident processes).​

​-​ ​File-backed​​pages​​are​​dropped​​from​​the​​kernel's​​page​​cache​​first,​​since​​they​​can​​be​
​reloaded later from the corresponding file.​

​-​ ​Anonymous​​pages​​that​​have​​no​​file​​backing​​and​​must​​be​​written​​to​​the​​swap​​space​
​in order to be available for reloading are dropped next.​

​-​ ​File-system-related kernel caches are dropped next. (Will discuss those later.)​
​-​ ​Last resort: Out-Of-Memory (OOM) killer terminates the current process.​

​-​ ​Thrashing.​​Even​​despite​​all​​the​​optimization​​discussed​​so​​far,​​there​​could​​be​​cases​​when​​processes​
​require​ ​more​ ​memory​ ​than​ ​the​ ​system​ ​has​ ​available​ ​for​ ​them,​ ​and​ ​thus,​ ​each​ ​time​ ​one​ ​page​ ​is​
​brought in, another page, whose contents will soon be referenced, is thrown out.​

​-​ ​When​ ​trashing​ ​occurs,​ ​processes​ ​spend​ ​all​ ​of​ ​their​ ​time​ ​blocked​ ​waiting​ ​for​ ​pages​ ​to​ ​be​
​fetched from disk, I/O devices are at 100% utilization, but the system does no useful work.​

​-​ ​Reasons​ ​for​ ​thrashing:​ ​accesses​ ​without​ ​temporal​ ​locality​ ​(past​ ​̸=​ ​future),​ ​or​ ​cases​ ​where​
​each process's hot memory footprint only individually fits in the system.​

​-​ ​What we ordered? Memory at the size of disk with access at the speed of physical memory.​
​-​ ​What did we get? Memory with the access time of the disk.​

​12​

​-​ ​Q8​​: Memory management implementation in Linux?​
​-​ ​The​​address​​space​​of​​each​​process​​in​​Linux​​contains​​multiple​​segments,​​and​​each​​segment​​is​​split​​in​

​smaller groups of contiguous pages represented by​​vm_area structs​​(or VMAs).​
​-​ ​All​​the​​VMAs​​of​​an​​address​​space​​are​​kept​​track​​of​​in​​the​​mm_struct​​of​​tasks​​under​​a​​maple​

​tree​ ​data​ ​structure,​ ​and​ ​multiple​ ​tasks​ ​belonging​ ​to​ ​the​ ​same​ ​address​ ​space​ ​(i.e.,​ ​to​ ​the​
​same process) will point to the same mm_struct.​

​-​ ​The key property of the maple tree is that it is a range-based, compact, and cache-efficient data​
​structure designed for fast lookups and updates while supporting lockless reads.​

​-​ ​The most relevant syscalls for managing proc mappings are​​mmap​​,​​munmap​​, and​​mprotect​​.​
​-​ ​Physical memory is divided into “zones” of​​physical​​pages​​, managed by the buddy system allocator.​

​-​ ​The​ ​buddy​ ​system​ ​allocator​ ​is​ ​a​ ​range-based,​ ​power-of-two​ ​allocator:​ ​Memory​ ​is​ ​split​​into​
​blocks​​of​​2^k​​page​​size,​​and​​when​​a​​request​​comes​​in,​​the​​allocator​​finds​​the​​smallest​​block​
​that​ ​fits;​ ​if​ ​only​ ​a​​larger​​block​​is​​available,​​it​​recursively​​splits​​it​​into​​“buddies”​​until​​the​​right​
​size is reached. Conversely, on freeing, buddies are merged back into larger blocks.​

​-​ ​Each​​zone​​has​​its​​own​​buddy​​allocator​​instance​​to​​manage​​free​​physical​​pages,​​and​​the​​core​
​of​ ​the​ ​zoned​ ​physical​ ​page​ ​frame​ ​allocation​​is​​__alloc_pages​​,​​which​​takes​​as​​input​​a​​GPF​
​flag​​indicating which zone physical pages must be​​allocated from.​

​-​ ​Finally,​ ​the​ ​page​ ​table​ ​address​ ​translation​ ​index​ ​is​ ​defined​ ​here​​,​ ​and​ ​all​ ​generic​ ​(architecture​
​independent) parts of the memory management is implemented​​here​​.​

​13​

https://elixir.bootlin.com/linux/v6.1/source/include/linux/mm_types.h#L444
https://elixir.bootlin.com/linux/v6.1/source/include/linux/mm_types.h#L514
https://docs.kernel.org/core-api/maple_tree.html
https://docs.kernel.org/core-api/maple_tree.html
https://elixir.bootlin.com/linux/v6.1/source/mm/mmap.c#L1464
https://elixir.bootlin.com/linux/v6.1/source/mm/mmap.c#L2797
https://elixir.bootlin.com/linux/v6.1/source/mm/mprotect.c#L816
https://elixir.bootlin.com/linux/v6.1/source/include/linux/mm_types.h#L73
https://elixir.bootlin.com/linux/v6.1/source/mm/page_alloc.c#L5522
https://elixir.bootlin.com/linux/v6.1/source/include/linux/gfp_types.h#L25
https://elixir.bootlin.com/linux/v6.1/source/include/linux/gfp_types.h#L25
https://elixir.bootlin.com/linux/v6.1/source/include/linux/pgtable.h
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c

​-​ ​The chain of calls involved in hangling a page fault exception in Linux x86 is as follows​
​idt_data early_pf_idts[]​

​INTG(X86_TRAP_PF, asm_exc_page_fault)​
​exc_page_fault()​

​handle_page_fault()​
​do_user_addr_fault()​

​handle_mm_fault()​
​__handle_mm_fault()​

​handle_pte_fault​​()​
​do_fault()​

​14​

https://elixir.bootlin.com/linux/v6.1/source/arch/x86/kernel/idt.c#L32
https://elixir.bootlin.com/linux/v6.1/source/arch/x86/kernel/idt.c#L32
https://elixir.bootlin.com/linux/v6.1/source/arch/x86/mm/fault.c#L1531
https://elixir.bootlin.com/linux/v6.1/source/arch/x86/mm/fault.c#L1519
https://elixir.bootlin.com/linux/v6.1/source/arch/x86/mm/fault.c#L1428
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c#L5217
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c#L5096
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c#L4897
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c#L4060

