- Q1: What is virtual memory?

Virtual memory is a layer of abstraction that translates virtual addresses into physical addresses.
- Virtual addresses is the language via which programms and processes talk to the processor

about memory.

- Physical addresses is the language via which the actual contents of memory (i.e., RAM

DIMMs) are accessed by the processsor for read or write via the memory bus

This translation is managed by the OS and is performed with the aid of a specific hardware
component, namely the Memory Management Unit (MMU).
The OS kernel has the privileges to turn the MMU on and off: when the MMU is on, any address
produced by the processor is virtual and passes through the MMU first, before being put on the
memory bus, in order to be translated into the corresponding physical memory address. By contrast,
when the MMU is off, all addresses are directly treated as physical.
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- In most modern commercial OSes, user programs can only talk virtual addresses to the processor,
because the MMU is only off during early system booting; and user programs can only execute after
the booting process is completed and the MMU is on.

- What this really means is that the way programmers imagine their programs will interact with memory
is, in fact, just an illusion built on top of a transparent layer of indirection.

- For example, the following program run twice, stores a value to the variable "i" seemingly at the same
memory address, but the contents are different because each process gets its own mapping of virtual
to physical memory addresses.

#include <stdio.h> = git:(master) X echo 0| sudo tee
#include <stdlib.h> /proc/sys/kernel/randomize_va_space
#include <time.h> 0

#include <unistd.h> )
=» vm git:(master) X ./hello_vm 10 &

int main(int argc, char **argv) { [1]1 186394

inti; [PID: 186394]; &i: 0xfffffffff210; i: 10

pid_t pid = getpid(); [PID: 186394]: Going to sleep for 10 seconds

. = Same address /

if (a}rgc I=2){ = vm git:(master) X ./hello_vm 3 & different value
fprintf(stderr, "Usage: <%s> <argv[1] goes here>\n", *argv); [2] 186432 both pr*ogr'ams'
return-1; [PID: 186432]; &i: OxfFFFFFFFF210; iz 3 runNing...

} [PID: 186432]: Going to sleep for 3 seconds

= atos e '
1= atoifargv(1) =» vm git:(master) X [PID: 186432]; | am done now

printf (" ", pid, &, i) [2] +186432 done  ./hello_vm 3
printf (" ", pid, i);
sleep(i); = vm git:(master) X [PID: 186394]; | am done now
printf (" ", pid, i); [1] + 186394 done  ./hello_vm 10
return O;
} = vm git:(master) X

- Q2: Why is virtual memory necessary?

- Fault Isolation. Confinement and separation of concerns between processes (and users), such that
anything that goes wrong in the address space of one process does not affect any other process
present in the system.

- lllusion of continuous memory. Programs are written, compiled, assembled, linked, and loaded as
if they have/are going to have access to abundant continuous memory; even though, in reality,
physical memory is limited in size and is allocated on demand in fragmented physical blocks.

- Frugal use of resources. Reduce the memory footprint of large programs by avoiding allocating a
physical memory range, until necessary (demand-paging), and make read-only parts of common
code, that is shared across many processes (e.g., shared libraries), available with only one physical
replica until a write occurs (Copy-On-Write).

- Performant use of resources. Leverage temporal locality code property (addresses that have been
recently referenced are likely to be references again soon) and spatial locality code property
(addresses that are close to the regime of recently referenced addresses are likely to be referenced
in the near future) to enable programs to run almost at the speed of main memory, or even faster, at
the speed of CPU caches, while regularly accessing slower, but of larger capacity, persistent storage
devices (such as HDDs and SSDs) to offload parts of code that are not in imminent use. (CoW is
particularly important for POSIX-compliant OSes because it significantly speeds up the starting of
new processes via fork, by duplicating address spaces rapidly without actually copying the complete
physical memory ranges until necessary.)



- Q3: How is virtual memory implemented?

Although virtual memory management is conceptually simple and everything revolves around an address
translation index that maps virtual to physical addresses, its implementation is quite complex.

In fact, it is likely the most complex of all kernel subsystems, as it requires intimate cooperation between
architecture-dependent software and hardware: "We've rewritten the VM several times in the last ten years,
and | expect it will be changed several more times in the next few years. Within five years, we'll almost
certainly have to make the current three-level page tables be four levels, etc." —Linus Torvald, 2001.

We will use the following questions to help navigate the basic design and implementation decisions
regarding the memory management kernel subsystem.

A.) What are the entries of the address translation index? Depending on the virtual memory
management mechanism implemented, the OS maintains in each process's PCB either a
segmentation table (segmentation), or a page table (paging), or a multilevel page table (multilevel
paging), and so on.

B.) How are the entries of the address translation index used? Every time the processor needs
to read or write data from or to a main memory address as a result of executing an instruction, the
virtual address produced by the processor is first passed to the MMU, which, in turn, needs to look
up the translation index in order to put the respective physical address on the system bus. Since
address translations are extremely often and the overhead of a single main memory reference
(~100 processor cycles) to look up the translation index from main memory on every address
translation is impractical, a small portion of the index is cached closer to the processor in a special
hardware component, called the Translation Look-aside Buffer (TLB). The TLB has a very low
access time (~1 cycle) and helps so that most translations occur inside the CPU core, without the
MMU having to look up the in-main-memory translation index.

C.1.) How are the entries of the address translation index allocated? New entries are added to
the translation index on demand whenever a translation is needed. Specifically, the MMU first
checks the TLB, and if a valid translation exists, it directly produces the respective physical
address. Otherwise, if the translation is not present in the TLB or the TLB entry is invalidated [Q:
when will this happen?], the hardware automatically looks up the in-memory translation index and
updates the TLB. However, if the translation is either not present or invalid in the in-memory index
as well, then the hardware raises an exception (i.e., a page fault) to inform the OS that it needs to
allocate a new physical memory range and add the respective translation in the index.

C.2.) When are the entries of the address translation index replaced? Although main memory
is quite large in size these days, there could still be cases when the available physical memory may
be fully occupied, and in order for a new physical range to be allocated an eviction (replacement) of
a used memory range needs to happen. In such low-memory situations, the replacement decision
regarding which in-use physical memory range to evicted in order to make the necessary space
available leverages the "converse" of temporal locality property: among all indexed and occupied
physical memory ranges, the Last Recently Used (LRU) ones are the least likely to be referenced
again soon; therefore, they are the best candidates to be evicted and swapped out (backed up to
secondary storage) to make fresh space available for allocation.



- Q4: What are the entries of the address translation index?

- Obviously, keeping a tuple <virtual address — physical address> for every address translation required for
every process in the system is impractical. Therefore, different ways to compress the required index size
(e.g., by batching together groups of "nearby" addresses) have been invented and used over the years.

- Segmentation: For each process in the system, there is a dedicated segmentation table, which holds the
base and limit physical address as well as the respective permissions for each segment of the process.
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Each time an address translation is needed, the higher bits of the virtual address (segment table
index) are used to index the process's segmentation table and the respective entries of the base
and size of the physical addresses as well as its permissions are retrieved.

The lower bits of virtual address (offset) are, then, checked against the size of the physical memory
range, and the respective permissions are also asserted. If the offset is less than or equal to the
segment size and no permission violation occurs, then the offset bits are appended to the segment
bits, and the MMU puts the derived physical memory address on the system bus. Otherwise, a
hardware exception is raised informing the OS that it needs to take action.

Segmentation allows each process's address space to be split into several independent chunks of
different sizes and permissions, allowing for some sharing and deduplication.

Its main drawback is fragmentation: internal—when segments have mapped but unused parts
internally; and external—multiple available segments which are unusable due to unfit sizes.

Mechanism: Segmentation
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Paging: For each process in the system, there is a dedicated page table, which holds the base of the
respective physical address as well as the respective permissions. Unlike segmentation, where allocations
of arbitrary-sized physical ranges are allowed, in paging, the physical and virtual memory are divided into
fixed-sized chunks—called pages—and each segment can span multiple contiguous pages.

Process A (prog. A)

Each time an address translation needs to occur, the high bits of virtual address (page table index)
are used to index the process's page table, and the respective entry of the physical page base as
well as its permissions are retrieved.

The lower bits of the virtual address (offset) are, then, checked against the designated page size
and the respective permissions are also asserted. If the offset is less than or equal to the page size
and no permission violation occurs, the offset bits are appended to the lower bits of the page table
entry (physical frame numbers), and the MMU puts the derived physical memory address on the
system bus; otherwise, a hardware exception is raised informing the OS that it needs to take action.
Example: Assume that the page table entries are 4 bytes each (20 high-bits for the base of the
physical page and the remaining for permissions) and that the 2nd entry in the page table of proc A
is 0x0006A007. What is the translation of the 32-bit virtual addresses 0x00001402 produced by
proc A? Since 0x00001400 = [0000 0000 0000 0000 0001],, (index=1) and [0100 0000 0000];,
(offset), and the 2nd page table entry is 0x0006A007 = [0000 0000 0000 0110 1010],, (pfn = 106),
then the physical translation is [0000 0000 0000 0110 1010],, + [0100 0000 0000],, = 0x0006A400.
Because all pages are of the same (relatively small) size, external fragmentation is not an issue
with paging, and although internal fragmentation may still be an issue, it is not as prominent.

The main limitation of single-level paging is the size of page tables for all processes in the system:
Assuming 32-bit virtual addresses, with 12 bits for the offset (4KB pages), and the 20 remaining bits
for the page table index with 4-byte page table entries = for 2720 page table entries, the OS needs
to preallocate 4MB for the page table of each process in the system.
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- Multilevel paging: Example of a two-level page table scheme with 4-byte page table entries, and 32-bit
virtual addresses, where the 12 lower bits are for the offset (4 KB page size), the 10 middle bits are for the
inner index, and the 10 higher bits are for the outer index bits. In this scheme, the outer table holds 2410 =
1024 entries (4 KB total size), and each instance of the allocated inner page table also holds 210 entries (4
KB size). However, with a two-level paging scheme, the OS needs to preallocate one page for the outer
table and an additional inner entry, on demand, for each additional 4 MB of actively used physical memory.
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- The 4-level Linux paging model: Assume a processor architecture with 64-bit virtual addresses and
48-bit physical addresses. (The virtual address space is restricted to only 48 bits, supporting 256 TB of total
addressable space; or it could be 52 bits, supporting 4 PB of total addressable space, to avoid the

unnecessary cost of manufacture.)
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All page table directories, including the PGD, and the allocated PUD, PMD, and PTE instances, are
held in physical pages that belong to the kernel's address space.

Each page table directory holds 512 8-byte-long entries, and the specific structure of each entry as
well as the semantics of each entries' bits are architecture-dependent: overall, on each entry, the
higher bits are reserved or unused, the middle 20 bits comprise the pointer at the base of the
next-level index or at the base of the physical page (for the PTE), and the remaining lower bits are
used for permission checks.

Given 8-byte-long entries, the PTE holds 512 entries which can address a 4KB page each (2 MB
reach); the PMD holds 512 PTE entries which can address 2 MB each (1 GB reach); the PUD holds
512 PMD entries that can address 1 GB each (512 GB reach); and, finally, the PGD (top level) holds
512 PUD entries that can address 512 GB each (256 TB total addressable virtual address space).
For details on the format of the page table entries expected by hardware, as well as on what each bit

represents, see “Chapter 5 - Paging” in Intel Software Developer's Manual, the translation table entry
formats in ARM's manual, and the Linux kernel's page tables definitions for x86 and aarch64.

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 5.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
5.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 5.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 5.9.2)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 5.8)

6(D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 5.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 5.9.2)

8(0) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 5.10); ignored otherwise

10:9 Ignored

11 (R) For ordinary paging, ignored; for HLAT paging, restart (if 1, linear-address translation is restarted with ordinary
paging)

M-1)12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page’s access rights (see Section 5.6.2);
otherwise, it is ignored and not used to control access rights.

63 (XD) IfIA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 5.6); otherwise, reserved (must be 0)

Format of a Page-Table Entry that Maps a 4-KByte Page


https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Translation-tables/Translation-table-entry-formats?lang=en
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Translation-tables/Translation-table-entry-formats?lang=en
https://elixir.bootlin.com/linux/v6.16/source/arch/x86/include/asm/pgtable_64_types.h#L21
https://elixir.bootlin.com/linux/v6.16/source/arch/arm64/include/asm/memory.h
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https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-/Translation-tables/Translation-table-entry-formats?lang=en

- Q5: How are the entries of the address translation index used?

- Every time the processor needs to read or write data from or to a memory address as a result of executing
an instruction, the virtual address produced by the processor is first passed to the MMU, which needs to
look up the translation index before putting the respective physical address on the system bus.

- Since address translations are extremely frequent and the overhead of a main memory reference (~100
processor cycles) to look up the translation index on every address translation would be impractical, a
fragment of the most recent address translations is cached closer to the processor in a special hardware
component, called the Translation Lookaside Buffer (TLB), which has very low access time (~1 cycle).

- The TLB entries are of the format <valid bit, context id, permissions, physical page number>, and the TLB
typically consists of a multi-level hierarchy (e.g., the 1st level is smaller and split into an i-TLB and a d-TLB,
and the 2nd level is larger and caches address translations of both types).

- Due to temporal locality, the TLB typically has a high hit rate (~99% on general workloads) and, thus, most
address translations do not require the MMU to reference the translation index in main memory.

- As long as the OS sets up the page table entries in main memory, in the case of hardware-managed
TLBs, the hardware will transparently return the corresponding address translation on a TLB hit, or
will walk the translation index in main memory on a TLB miss, or will raise a hardware exception on
an invalid memory reference. The only responsibility of the OS is to invalidate the TLB entries every
time an address space change (context switch) occurs, to prevent stale mappings of one process
from spilling into the address space of another process.

- Modern CPUs use Address Space ldentifiers (ASIDs) and Process Context IDs (PCIDs) to avoid
complete TLB flushes: on a context switch, the OS updates the current ASID/PCID, and the hardware
ignores entries from other processes. (See this for TLB-related Linux kernel APIs.)
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https://www.kernel.org/doc/html/v4.19/core-api/cachetlb.html

Q6: How are new entries allocated in the address translation index?

New entries are allocated into the translation index lazily / on demand only when the respective translation
is looked up (demand-paging); and even after a translation entry slot has been added to the index, the entry
itself may remain marked "not present," if the OS can defer allocating the backing physical page.

Assume that a process requests 1MB for its heap—why occupy 256 physical pages before they are
actually used? Just add a memory range in the allowed mappings of the process's PCB to indicate
that the translation is legal, and defer the rest (including allocating a translation entry and potentially
allocating the physical page backing the translation) for later.
Assume a process requests a 1TMB zeroed-out buffer—while it only performs reads, why occupy
256 physical pages if only one zeroed-out physical page can back up all translations? Allocate all
the translation entries such that they all point to the same zeroed-out physical page and mark the
entry's permissions "read-only". (If a write-access occurs, then the OS will update the translation.)
Assume a child process is created by fork and, according to POSIX, the OS ought to duplicate the
parent's address space on the child—why copying the actual physical pages from parent to the
child, instead of allocating the child translation entries such that they point to the parent's physical
pages, until a write access occurs on any of the two sides (Copy-on-Write). [Q: Useful? fork+exec.]

The above functionality (and much more) is implemented by the OS in the page fault handler, which is
invoked every time a page fault exception is raised by the hardware because an appropriate translation
cannot be found either in the TLB entries or in the in-memory translation index.
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To manage the translation index and implement the above functionality, the OS needs to maintain two
additional data structures: One per-process data structure that keeps track of each process's allowed

mappings and the respective permissions, and one global data structure that keeps track of the status of

physical pages that are globally available for allocations, or not.
The user must be able to control what mappings (i.e., what ranges of virtual addresses) are allowed

for their processes and with what permissions, at page granularity, and the OS must, in turn, add
these mappings to the respective process's PCB and enforce the appropriate permission checks

when each translation occurs. (The most relevant POSIX syscalls are mmap and mmprotect.)
The data structure that keeps track of the state of physical pages is usually managed entirely
internally by the OS, and the user has no visibility into it.

Page fault handling. Since every address translation may involve hardware and software
collaboration, on every page fault, the exception handler needs to know (1) what the faulting (virtual)
address was, and (2) what the processor's intention was when it generated the virtual address.

The faulting virtual address is passed by the hardware to the software via a privileged
register (e.g., %cr2 in x86) whenever a page fault exception occurs.

The page fault handler validates that the faulting virtual address falls within a valid range that
belongs to some page of a segment of the current process; otherwise, a SIGSEGV is raised.
The page fault handler uses the exception's error code (automatically pushed by hardware to
the expedition handler's stack every time an exception occurs) to infer what the processor's
intended memory access was (e.g., read or write data from an address, or read an instruction
as part of its instruction fetching pipeline stage), and compares it either to the permissions
registered in the respective PCB structure keeping track of the process's mappings (if no
translation entry yet exists) or to the permission bits of the translation entry (if an entry is
populated in the process's translation index).

If the translation entry is successfully updated (minor/major/CoW pagefault)—that is, the
faulting condition is hopefully fixed—the "faulting" instruction is then reexecuted.

Read vs write page faults, and OS "laziness"

int main(int arge, char **argv) {
char a;
int vma_size = 2 * 4096;
char *buffer = mmap(NULL, vma_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

for (int i=0;i <vma_size; i += 4096) {
start_time = clock gettime ns();
a = buffer[i];
end_time = clock gettime ns();
printf("
/4096, end_time - start_time);

start_time = clock gettime ns();
a = buffer[i]; B -
end_time = clock gettime ns();
printf(" i .1
i/4096, end_time - start_time);
}
for (inti=0;i<vma_size; i += 4096) {
start_time = clock gettime ns();
buffer[i] = 'A";
end_time = clock_gettime ns();
printf("
i/4096, end_time - start_time);

start_time =clock_gettime_ns();
buffer[i] = 'A";
end_time = clock gettime ns();
printf(" i 1

i/4096, end_time - start_time);

= git:(master) X ./read_write_page_faults

(1) minor page faults: 87, major page faults: 0

page-0: Time elapsed: 2633 nanoseconds (1st read)
page-0: Time elapsed: 78 nanoseconds (2nd read)
page-1: Time elapsed: 1956 nanoseconds (1st read)
page-1: Time elapsed: 78 nanoseconds (2nd read)

Read pg faults

(2) minor page faults: 89, major page faults: 0

page-0: Time elapsed: 4131 nanoseconds (1st write)
page-0: Time elapsed: 113 nanoseconds (2nd write)
page-1: Time elapsed: 3694 nanoseconds (1st write)
page-1: Time elapsed: 58 nanoseconds (2nd write)

(3) minor page faults: 91, major page faults: 0

Write pg faults

=» git:(master) X ./write_read_page_faults

(1) minor page faults: 88, major page faults: 0

page-0: Time elapsed: 5868 nanoseconds (1st write)
page-0: Time elapsed: 115 nanoseconds (2nd write)
page-1: Time elapsed: 5487 nanoseconds (1st write)
page-1: Time elapsed: 48 nanoseconds (2nd write)

Write pg faults

(2) minor page faults: 90, major page faults: 0

page-0: Time elapsed: 90 nanoseconds (1st read)
page-0: Time elapsed: 92 nanoseconds (2nd read)
page-1: Time elapsed: 59 nanoseconds (1st read)
page-1: Time elapsed: 46 nanoseconds (2nd read)

No read pg faults

(3) minor page faults: 90, major page faults: 0

11



- Physical page frame eviction and replacement. Since physical memory is finite, there could be
cases where the page fault handler may need to allocate a translation entry, but no free physical
page frame is available. Therefore, the OS proactively tracks physical page frame usage to be able to
identify physical pages that are "good" candidates to be reclaimed in low-memory situations

Last Recently Used (LRU) policy: To identify which physical pages are "good" candidates to
evict in a low-memory situation, the OS leverages an "inverse" temporal locality policy based
on the premise that the Last Recently Used (LRU) page is likely the best candidate to evict.
Approximate LRU: Pure LRU is expensive to implement in software, and instead, an
alternative approximate LRU version, known as the CLOCK algorithm, is implemented in
practice with minimal hardware support.

- Each entry in the address translation index has a "referenced" bit, which is
automatically set by the MMU every time the respective translation is accessed.

- The OS periodically sweeps through the entries of the translation index of all (or
most) processes and resets the respective "accessed" bits.

- With that, translation entries whose "accessed" bits are off will be the ones accessed
less recently compared to those whose accessed bits are on, and the respective
physical page frames will be preferred for reclaiming.

Reclaiming decision: The decision for reclaiming physical pages is made separately based
on the type of occupied pages, which distinguishes between file-backed pages (i.e., data
from actual file blocks) and anonymous pages without file-backed content (i.e., for heap and
stack segments of resident processes).

- File-backed pages are dropped from the kernel's page cache first, since they can be
reloaded later from the corresponding file.

- Anonymous pages that have no file backing and must be written to the swap space
in order to be available for reloading are dropped next.

- File-system-related kernel caches are dropped next. (Will discuss those later.)

- Last resort: Out-Of-Memory (OOM) killer terminates the current process.

- Thrashing. Even despite all the optimization discussed so far, there could be cases when processes
require more memory than the system has available for them, and thus, each time one page is
brought in, another page, whose contents will soon be referenced, is thrown out.

When trashing occurs, processes spend all of their time blocked waiting for pages to be
fetched from disk, I/O devices are at 100% utilization, but the system does no useful work.
Reasons for thrashing: accesses without temporal locality (past & future), or cases where
each process's hot memory footprint only individually fits in the system.

What we ordered? Memory at the size of disk with access at the speed of physical memory.
What did we get? Memory with the access time of the disk.
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- Q8: Memory management implementation in Linux?
- The address space of each process in Linux contains multiple segments, and each segment is split in
smaller groups of contiguous pages represented by vm_area structs (or VMAS).

- All the VMAs of an address space are kept track of in the mm_struct of tasks under a maple
tree data structure, and multiple tasks belonging to the same address space (i.e., to the
same process) will point to the same mm_struct.

- The key property of the maple tree is that it is a range-based, compact, and cache-efficient data
structure designed for fast lookups and updates while supporting lockless reads.

- The most relevant syscalls for managing proc mappings are mmap, munmap, and mprotect.

- Physical memory is divided into “zones” of physical pages, managed by the buddy system allocator.

- The buddy system allocator is a range-based, power-of-two allocator: Memory is split into
blocks of 2"k page size, and when a request comes in, the allocator finds the smallest block
that fits; if only a larger block is available, it recursively splits it into “buddies” until the right
size is reached. Conversely, on freeing, buddies are merged back into larger blocks.

- Each zone has its own buddy allocator instance to manage free physical pages, and the core
of the zoned physical page frame allocation is __alloc_pages, which takes as input a GPF
flag indicating which zone physical pages must be allocated from.

- Finally, the page table address translation index is defined here, and all generic (architecture
independent) parts of the memory management is implemented here.

Process view 0S5 View Implementation of process address space /proc interface
P W ). A A
f \ ) f \ f \
- start_code
struct task struct {
instruction
instruction har commp )
. " char TASK_COMM LEN] ;
instruction struct mm stract *active._mm; = git:(master) X cat /proc/12453/maps
start_data *mm ;
Initialized data (:rodata) e :2:2 mm:iZEZ: (mm’ 3aa2deda0000-aaaededalOnd e . /100 fext. date,
< end_data - aaaadcdb0000-aaaadcdb1000 r-p .. /foo bss segment
Higher pgd t *pgd; aaaadcdb1000-aaaadedb2000 rw-p .. /foo VMAs
;ndsmvry & start_brk unsigned long start_code, end_code;
addresses unsigned long start_data, end_data; aaaaed20d000-aaaaed22e000 rw-p ... [heap]
unsigned long start_brk, brk;
-« brk

unsigned long start_stack;

mmap‘ed
fffbe610000-ffffbe798000 r-xp .. /libc.so }

y shared lib
ffffbe798000-ffffbe7a7000 — .. /lib
=) e7a7000 —p /libc.so VMAS

struct maple tree mm_mt;

< sp struct vm_area_struct {

fffff6461000-fffff6482000 rw-p .. [stack] } stack VMA
Stack unsigned long vm_start;
< start_stack unsigned long vm_end;

pgprot t vm_page_prot;
vm_flags t vm_flags;

Virtual memory

Kernel space addresses - Page table entries for current process Ph‘lS'Cﬂl memory
User space addresses
PTE
PMD
PFN| perms
PUD [ — . .
PTE Translation
base Pages of
o PGD F r |::> Target page 9
Privileged register loaded with PMD . current process
the base of current process's > base
page table index
PUD
A base
%ers PGD
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https://elixir.bootlin.com/linux/v6.1/source/include/linux/mm_types.h#L444
https://elixir.bootlin.com/linux/v6.1/source/include/linux/mm_types.h#L514
https://docs.kernel.org/core-api/maple_tree.html
https://docs.kernel.org/core-api/maple_tree.html
https://elixir.bootlin.com/linux/v6.1/source/mm/mmap.c#L1464
https://elixir.bootlin.com/linux/v6.1/source/mm/mmap.c#L2797
https://elixir.bootlin.com/linux/v6.1/source/mm/mprotect.c#L816
https://elixir.bootlin.com/linux/v6.1/source/include/linux/mm_types.h#L73
https://elixir.bootlin.com/linux/v6.1/source/mm/page_alloc.c#L5522
https://elixir.bootlin.com/linux/v6.1/source/include/linux/gfp_types.h#L25
https://elixir.bootlin.com/linux/v6.1/source/include/linux/gfp_types.h#L25
https://elixir.bootlin.com/linux/v6.1/source/include/linux/pgtable.h
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c

The chain of calls involved in hangling a page fault exception in Linux x86 is as follows
idt data early_pf _idts]]
INTG(X86_TRAP_PF, asm_exc_page_fault)
exc_page fault()
handle_page_fault()
do_user_addr fault()
handle_mm_fault()
handle_mm_fault()
handle pte fault()

do_fault
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https://elixir.bootlin.com/linux/v6.1/source/arch/x86/kernel/idt.c#L32
https://elixir.bootlin.com/linux/v6.1/source/arch/x86/kernel/idt.c#L32
https://elixir.bootlin.com/linux/v6.1/source/arch/x86/mm/fault.c#L1531
https://elixir.bootlin.com/linux/v6.1/source/arch/x86/mm/fault.c#L1519
https://elixir.bootlin.com/linux/v6.1/source/arch/x86/mm/fault.c#L1428
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c#L5217
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c#L5096
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c#L4897
https://elixir.bootlin.com/linux/v6.1/source/mm/memory.c#L4060

