Q1: What is a process?

Strict POSIX definition: "An address space with one or more threads executing within."
A process is an instance of a program in execution, with its own isolated access to system resources
mediated by the OS and its own execution state.
- A program is a recipe—e.g., instructions on how to bake a cake.
- A process is all the mess you make in your kitchen while following the instructions on how to
bake a cake, including all the resources you have to use.
Simple programming model
- Want to run a program? Need a process.
- Want to run multiple programs? Need multiple processes.

Q2: Why use a process?

Little responsibility - Life is good!
- All the memory is available to user programs in a confined and isolated manner.
- All system services on your disposal, as long as you request them properly.
- All shared resources are seamlessly managed by the OS so that user programs have a
"pleasant" experience.
Helps increase throughput: Complete as many jobs as possible in a unit of time.
- How? Increase utilization of shared resources.
- Multiprogramming: Multiple processes reside in memory at the same time, and the processor
switches between them when a process is waiting for 1/0.

Q3: What are the components of a process?

Based on what a process is (from Q1 above) as well as on what a program looks like in
memory (from the previous chapter), the basic components of a process are as follows.

Virtual Address Space
- Alinear array of bytes: [0, 2*32/64] with all static and dynamic segments in virtual memory.
(static segments: .text segment/ .rodata, .data, .bss data segments; dynamic segments: heap,
stack, and mmap'ed segments.)
- See also "How does a program look in memory?" (previous chapter).
Execution state
- Aninstruction pointer indicating the next instruction to be fetched from memory, and a stack
pointer indicating the latest active procedure call.
- A set of general-purpose registers with their values.
Shared systems resources
- Open files, network connections, and so on.
Process-specific metadata
- Credentials (user/group ID), permissions, running statistics (e.g., processor time consumed),
process state (e.g., "ready" or "waiting").
The OS maintains a struct—called Process Control Block (PCB)—to keep track of all the above, and
much more. (e.g., see task_struct and mm_struct, in Linux.)

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://elixir.bootlin.com/linux/v6.13.5/source/include/linux/sched.h#L785
https://elixir.bootlin.com/linux/v6.13.5/source/include/linux/mm_types.h#L803

Overview of process components

OS view of process VAS

Process Control Block (PCB)

0x08048000 —» <&— start_code

» 3 Shared system . w/ ASLRis off
| e resouf')ées : Executable
instructions

Process view of VAS

~<&— start_data

text segment (code)

Higher mem
addresses
<— end_data

1
1
1
1
1
1
1
1
1
1
1
1
<4— start_brk 1
Metadata :
<— bk 1
1
1
1
1
1
<4— mmap base |
: 1
Process memory descriptor] :
RLIMIT STACK < sp B
default: 8MB | Stack !
<— start_stack 1 l
1
TASK_SIZE —» 1
0xC0000000 (3GB) B
1
1
1
1
OxfFEFFFFF (4GB) - 1

- Q4: How do we create a process?

- Approach-1: Cloning (e.g., POSIX fork()).
- Duplicating and diverging address spaces.
- Pause the current process and save its state.
- Duplicate its PCB (can select what to copy and what not).
- Add a new PCB to the ready queue.
- Use the return value of fork() to distinguish parent and child processes.
- Requires distinguished init process: The first user process is initiated by the kernel. All other
user processes are its descendants.
- Approach-2: Instantiating a process tabula rasa (Win32 CreateProcess()).
- Load code and data into memory.
- Create and initialize a new PCB.
- Add a new PCB to the ready queue.
- Does not require a distinguished process.
- Approach-1 vs. -2
- Elegant simplicity of the POSX interface: fork() takes no arguments vs. CreateProcess()
requires a ton of different arguments.
- The user program uses the return value of fork() to distinguish the flow of execution on the parent
versus the child process. [Q: How to execute existing executables?]

- Q5: How does a process terminate?
- Normal Termination
- A process exits using the syscall exit(...).
- The OS passes the exit status to the parent via the syscall wait(...).
- The OS then frees the resources of the exited process.
- Abnormal Termination
- Aprocess is forcibly terminated by the OS or by another process. (Will talk about signals and
process communication later.)
- Zombie Process: This occurs when a child exits before its parent invokes the wait(...) to collect
the child's exit status.
- The OS retains the exit status until the parent calls wait().
- The process is not fully removed until reaped.
- Orphan Process: This occurs when a parent exits before their child.
- The child gets re-parented to the init process, which manages its termination.

- Q6: What are all the possible states a process could be in during its lifetime?

- A POSIX process has an execution state that indicates what it is currently doing.
- Each process' PCB is queued on the respective queue, accordingly.
- As a process executes, it moves from state to state.

- Ready: A process which is ready to be executed—i.e., ready to be scheduled in ("dispatched"),
but it's waiting because another process is using the processor.

- Waiting (blocked): A process is blocked waiting for an async event to complete—e.g., a disk
I/O—and cannot make progress until the event completes.

- Running: A process which is executing on the processor until either (i) an async event is
required and the process transitions to the "waiting" queue; or (ii) it exceeds its maximum
quantum of processor execution time, a scheduler interrupt occurs, and it transitions to the
"ready" queue.

- Terminated (normally): A process which finished execution normally (either via calling exit or by
returning from its main) and its parent has called wait to collect the exit status. Otherwise

- The child process becomes a zombie, if the parent still exists but hasn't called wait() yet.
- Or, the child process becomes an orphan, if the parent has exited already.

Process states, and state queues diagram

parent process

Ready qu
eady queve has terminated

process

dispatch

p— re-parented
- Scheduler Exir,x“"'\ Orphan }-k—,.,_rm init

Admitted

Parent has invoked

wait() and hos not

’/l‘\ Exit terminated Y

/ . N J——_— o parent calls

/ e dl T it r cess

/ » Zombie Dy wait(), or proces _.
- gets re-parented to init

Scheduler
interrupt

" Needs parent process
async event hasn't called
wait() yet

Async event
completion

m -«— Keyboard events
Device .
queues D:I:I:I]:I ~«— Disk events
. - «— Network events

- Q7: How does the OS run multiple processes simultaneously?

- The goal is to run multiple processes simultaneously, giving each process the illusion that it has full and
exclusive access to all the available hardware resources.

- We'll talk about scheduling in detail later, but for now, assume multiprogramming (i.e., many processes
in memory, one allocated on the processor) and a simple timesharing dispatching loop implemented
with hardware support for preemption (i.e., periodic timer interrupts handled by the scheduler).

- while (1) {
run each process for a bit

}

- Switching between processes—known as context switching (a context is a mapping of virtual to physical
addresses)—is tricky and architecture-dependent
- Need to save process execution state (registers) to the process' PCB.
- Run code to save general-purpose registers actually changes registers.
- Use hardware support (e.g., pushad/ popad on x86_32) or use stack (x86_64).
- Must balance context switch frequency with scheduling requirement
- Saving and restoring many things repeatedly is expensive
- A bigger problem exists. [Context switch requires flushing the TLB.]

Process dispatching loop (timesharing)

do {
GET a pr‘ocess T)fr‘om r‘eady queue This |00p executes atf least
Execute Puntil time Q expires once every _4nl$ per
. rocessor in Linux
Put P back in ready queue P
} while(1)
Dispatch P, Time

T~ - Select?,

Ready queue //\ - Load PCB of P, and start execution
Processor - Interrupt P,after Q amount of execution time
Scheduler
interrupt - Save processor state on PCB of P,

- Add PCB of P, in ready queue Context switch
... b
Dispatch P, - Select P, z e
Ready queue //\‘ - Load PCB of P, and start execution

Processor - Interrupt P, after Q amount of execution time

_ $cheduler - Save processor state on PCB of ¥,
inferrupt

- Add PCB of P, in ready queue

Dispatch P, - Select P,

- Load PCB of P_and start execution
Ready queue //_\‘

- Interrupt P_after Q amount of execution time

Scheduler - Save processor state on PCB of P,
inferrupt .
Y - Add PCB of P, in ready queue

Context switch
"Péa ’P5

Q8: What are the steps involved in process creation and process switching in Linux?
- Linux uses a neutral term for processes (and threads) called tasks.
- The implementation semantics respect POSIX expectations for processes.
- Each process in Linux has two stacks, a user and a kernel stack (default: 8KB).
- The kernel stack can only be accessed in kernel mode.
- Interrupt and exception handlers run on the kernel stack because the user stack cannot be
trusted. [Recall all the drama with stack switching.]
[Q: Since switching address spaces is costly, how are we avoiding this overhead when entering kernel
mode from user mode?]

- Fork on Linux x86

SYSCALL_DEFINEO(fork)
kernel_clone(...)

copy_process(...)
dup_task_struct(...)
arch_dup_task_struct(...)
copy *(...
wake up_new_task()

- Context switch on Linux x86
schedule(...) [We will talk about scheduling later.]

schedule(...)
pick_next_task(...)

context_switch()

switch to(...)

finish_task_switch(...)

https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L2897
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L2774
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L2147
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L1112
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/process.c#L94
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L2391
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L4854
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L6847
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L6645
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L6645
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L6645
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/switch_to.h#L49
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L5209

