
​-​ ​Q1​​: What is a process?​
​-​ ​Strict POSIX​​definition​​: "An address space with one​​or more threads executing within."​
​-​ ​A process is an instance of a program in execution, with its own isolated access to system resources​

​mediated by the OS and its own execution state.​
​-​ ​A​​program​​is a recipe—e.g., instructions on how to​​bake a cake.​
​-​ ​A​​process​​is all the mess you make in your kitchen​​while following the instructions on how to​

​bake a cake, including all the resources you have to use.​
​-​ ​Simple programming model​

​-​ ​Want to run a program? Need a process.​
​-​ ​Want to run multiple programs? Need multiple processes.​

​-​ ​Q2​​: Why use a process?​
​-​ ​Little responsibility - Life is good!​

​-​ ​All the memory is available to user programs in a confined and isolated manner.​
​-​ ​All system services on your disposal, as long as you request them properly.​
​-​ ​All shared resources are seamlessly managed by the OS so that user programs have a​

​"pleasant" experience.​
​-​ ​Helps​​increase throughput:​​Complete as many jobs as​​possible in a unit of time.​

​-​ ​How​​? Increase utilization of shared resources.​
​-​ ​Multiprogramming:​​Multiple processes reside in memory​​at the same time, and the processor​

​switches between them when a process is waiting for I/O.​

​-​ ​Q3​​: What are the components of a process?​
​Based on what a process is (from Q1 above) as well as on what a program looks like in​
​memory (from the previous chapter), the basic components of a process are as follows.​
​-​ ​Virtual Address Space​

​-​ ​A linear array of bytes: [0, 2^32/64] with all static and dynamic segments in virtual memory.​
​(static segments: .text segment / .rodata, .data, .bss data segments; dynamic segments: heap,​
​stack, and mmap'ed segments.)​

​-​ ​See also "How does a program look in memory?" (previous chapter).​
​-​ ​Execution state​

​-​ ​An instruction pointer indicating the next instruction to be fetched from memory, and a stack​
​pointer indicating the latest active procedure call.​

​-​ ​A set of general-purpose registers with their values.​
​-​ ​Shared systems resources​

​-​ ​Open files, network connections, and so on.​
​-​ ​Process-specific metadata​

​-​ ​Credentials (user/group ID), permissions, running statistics (e.g., processor time consumed),​
​process state (e.g., "ready" or "waiting").​

​-​ ​The OS maintains a struct—called Process Control Block (PCB)—to keep track of all the above, and​
​much more. (e.g., see​​task_struct​​and​​mm_struct​​, in​​Linux.)​

​1​

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://elixir.bootlin.com/linux/v6.13.5/source/include/linux/sched.h#L785
https://elixir.bootlin.com/linux/v6.13.5/source/include/linux/mm_types.h#L803

​Overview of process components​

​-​ ​Q4​​: How do we create a process?​
​-​ ​Approach-1: Cloning (e.g., POSIX​​fork()​​).​

​-​ ​Duplicating and diverging address spaces.​
​-​ ​Pause the current process and save its state.​
​-​ ​Duplicate its PCB (can select what to copy and what not).​
​-​ ​Add a new PCB to the ready queue.​
​-​ ​Use the return value of fork() to distinguish parent and child processes.​
​-​ ​Requires distinguished​​init​​process​​: The first user​​process is initiated by the kernel. All other​

​user processes are its descendants.​
​-​ ​Approach-2: Instantiating a process tabula rasa (Win32​​CreateProcess()​​).​

​-​ ​Load code and data into memory.​
​-​ ​Create and initialize a new PCB.​
​-​ ​Add a new PCB to the ready queue.​
​-​ ​Does not require a distinguished process.​

​-​ ​Approach-1 vs. -2​
​-​ ​Elegant simplicity of the POSX interface: fork() takes no arguments vs. CreateProcess()​

​requires a ton of different arguments.​
​-​ ​The user program uses the return value of fork() to distinguish the flow of execution on the parent​

​versus the child process. [Q: How to execute existing executables?]​

​2​

​-​​Q5​​: How does a process terminate?​
​-​ ​Normal Termination​

​-​ ​A process exits using the syscall exit(...).​
​-​ ​The OS passes the exit status to the parent via the syscall wait(...).​
​-​ ​The OS then frees the resources of the exited process.​

​-​ ​Abnormal Termination​
​-​ ​A process is forcibly terminated by the OS or by another process. (Will talk about signals and​

​process communication later.)​
​-​ ​Zombie Process​​: This occurs when a child exits before​​its parent invokes the wait(...) to collect​

​the child's exit status.​
​-​ ​The OS retains the exit status until the parent calls wait().​
​-​ ​The process is not fully removed until reaped.​

​-​ ​Orphan Process​​: This occurs when a parent exits before​​their child.​
​-​ ​The child gets re-parented to the init process, which manages its termination.​

​-​ ​Q6​​: What are all the possible states a process could​​be in during its lifetime?​
​-​ ​A POSIX process has an execution state that indicates what it is currently doing.​
​-​ ​Each process' PCB is queued on the respective queue, accordingly.​
​-​ ​As a process executes, it moves from state to state.​

​-​ ​Ready​​: A process which is ready to be executed—i.e.,​​ready to be scheduled in ("dispatched"),​
​but it's waiting because another process is using the processor.​

​-​ ​Waiting​​(blocked): A process is blocked waiting for​​an async event to complete—e.g., a disk​
​I/O—and cannot make progress until the event completes.​

​-​ ​Running​​: A process which is executing on the processor​​until either (i) an async event is​
​required and the process transitions to the "waiting" queue; or (ii) it exceeds its maximum​
​quantum of processor execution time, a scheduler interrupt occurs, and it transitions to the​
​"ready" queue.​

​-​ ​Terminated​​(normally)​​:​​A process which finished execution​​normally (either via calling exit or by​
​returning from its main) and its parent has called wait to collect the exit status. Otherwise​
​-​ ​The child process becomes a​​zombie,​​if the parent​​still exists but hasn't called wait() yet.​
​-​ ​Or, the child process becomes an​​orphan​​, if the parent​​has exited already.​

​Process states, and state queues diagram​

​3​

​-​ ​Q7​​: How does the OS run multiple processes simultaneously?​
​-​ ​The goal is to run multiple processes simultaneously, giving each process the illusion that it has full and​

​exclusive access to all the available hardware resources.​
​-​ ​We'll talk about scheduling in detail later, but for now, assume multiprogramming (i.e., many processes​

​in memory, one allocated on the processor) and a simple timesharing dispatching loop implemented​
​with hardware support for preemption (i.e., periodic timer interrupts handled by the scheduler).​

​-​ ​while (1) {​
​run each process for a bit​

​}​
​-​ ​Switching between processes—known as context switching (a context is a mapping of virtual to physical​

​addresses)—is tricky and architecture-dependent​
​-​ ​Need to save process execution state (registers) to the process' PCB.​
​-​ ​Run code to save general-purpose registers actually changes registers.​
​-​ ​Use hardware support (e.g., pushad/ popad on x86_32) or use stack (x86_64).​
​-​ ​Must balance context switch frequency with scheduling requirement​

​-​ ​Saving and restoring many things repeatedly is expensive​
​-​ ​A bigger problem exists. [Context switch requires flushing the TLB.]​

​Process dispatching loop (timesharing)​

​4​

​-​ ​Q8​​: What are the steps involved in process creation and process switching in​​Linux​​?​
​-​ ​Linux uses a neutral term for processes (and threads) called tasks.​
​-​ ​The implementation semantics respect POSIX expectations for processes.​
​-​ ​Each process in Linux has two stacks, a user and a kernel stack (default: 8KB).​

​-​ ​The kernel stack can only be accessed in kernel mode.​
​-​ ​Interrupt and exception handlers run on the kernel stack because the user stack cannot be​

​trusted. [Recall all the drama with stack switching.]​
​[Q: Since switching address spaces is costly, how are we avoiding this overhead when entering kernel​
​mode from user mode?]​

​-​ ​Fork on Linux x86​
​SYSCALL_DEFINE0(fork)​

​kernel_clone(...)​
​copy_process(...)​

​dup_task_struct(...)​
​arch_dup_task_struct(...)​
​copy_*(...)​

​wake_up_new_task()​

​-​ ​Context switch on Linux x86​
​schedule(...)​​[We will talk about scheduling later.]​

​__schedule(...)​
​pick_next_task(...)​

​context_switch()​
​switch_to(...)​
​finish_task_switch(...)​

​5​

https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L2897
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L2774
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L2147
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L1112
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/kernel/process.c#L94
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/fork.c#L2391
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L4854
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L6847
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L6645
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L6645
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L6645
https://elixir.bootlin.com/linux/v6.14-rc6/source/arch/x86/include/asm/switch_to.h#L49
https://elixir.bootlin.com/linux/v6.14-rc6/source/kernel/sched/core.c#L5209

