- Q1: How does a program look in memory?

All programs are given by the OS the illusion that they have exclusive access to a continuous
array of memory addresses in virtual memory, known as the Virtual Address Space (VAS).
The VAS of each program is divided into a user space and a kernel space portion.
- For Linux x86_32 the canonical split is the lower 3GB for the user space portion, and the
upper 1GB for the kernel space portion.
- For Linux x86_64 the canonical split is the lower 128TB for the user space portion, and
the upper 128TB for the kernel space portion.
The user space portion of the VAS of each program is further divided into segments.
- Static segments (their size is static during run time)

- The .text segment: Contains the executable code (instructions) of the program.
This segment is marked read-execute. [Why? Self-modifying code can't ever be a
good idea.]

- The .rodata data segment: Contains constant values, and is marked read-only,
ensuring immutable data.

- The .data data segment: Contains global and static variables that are initialized,
and is read-write, so that values can be modified at runtime.

- The .bss data segment: Contains global and static variables that are uninitialized
or set to 0, and is also read-write.

- Dynamic segments (their size is not static during run time)

- The heap: Grows at run-time towards higher addresses and contains variables
dynamically allocated—e.g., by the malloc user-space library function. No explicit,
fixed max-size.

- The stack: It is a Last-In-First-Out (LIFO) memory region that grows dynamically
during execution towards lower addresses (and shrinks conversely). It is used for
bookkeeping during function calls—that is, to temporarily save local variables,
arguments, and return addresses.

- Other dynamic segments

- Shared libraries: User-space libraries that are necessary to many user
programs are mapped in the address spaces of multiple processes from
a single, shared instance in physical memory. (Will explain.)

- VDSO: A tiny subset of frequently-used syscalls (e.g., gettimeofday()) is
mmap'ed by the OS kernel to the address space of all processes to allow
fast use without the cost of a full syscall invocation.

- Large dynamic allocations: In modern systems, large dynamic
allocations may appear in anonymous mapping segments. That is,
outside the heap segment ending in program break (brk ptr).



ayout of a progra

0x08048000 —»

when ASLR is of f text

's virtual address space

inux x86_32

44— start_code

instruction .
instruction <—— Y%eip
instruction

Higher mem
addresses

RLIMIT_STACK
default: 8BMB

TASK_SIZE —»
0xC0000000 (36B)

Oxffffffff (468) -

le C

char uninitialized_global[1000];
const char *message = "Hello, World"\n";

void foo() {
unsigned long sp;
_asm__(
"mov %0, sp"
=" (sp)
)
printf("@ioo/

}

voidmain() {
unsigned long Sp;
printf("@.bss variable:
print£("@ . rodata variable:

Current stack pointer (sp): ", sp);

" &uninitialized_global);
", &message);

_asm__{
"mov %0, sp"
N ll=rll (Sp)
)
print£("@main / Current sp: . Sp);
char *heap = (char *)malloc(50 * sizeof(char));
print£("@heap memory starts at: ", heap);

foo();

Executable instructions

4— start_data

<+— end_data

a— start_brk

-+— brk

-4— start_stack

=» cat /proc/1245382/maps

aaaadcda0000-aaaadcda1000 r-xp ... /os/sample
aaaadcdb0000-aaaadcdb1000 r--p ... /os/sample
aaaadcdb1000-aaaadcdb2000 rw-p ... fos/sample
aaaaed20d000-aaaaed22e000 rw-p ... [heap]

. lusr/lib/libc.so0.6
... lusr/lib/libc.so.6
... lusr/lib/libc.so0.6
.. lusrflib/libc.s0.6

ffffbe610000-ffffoe 798000 r-xp
ffffbe 798000-ffffbe7a7000 ---p
ffffbe7a7000-ffffbe7ab000 r--p
ffffbe 7ab000-ffifbe7ad000 rw-p
ffffbe 7ad000-ffifbe 769000 rw-p
ffffbe 7d9000-ffffoe804000 r-xp
ffffbe80e000-ffffbe810000 rw-p
ffffbe810000-ffffoe812000 r--p
ffffbe812000-ffffoe813000 r-xp
ffffbe813000-ffffoe815000 r--p
ffffbe815000-ffffoe817000 rw-p
fffff6461000-fffff6482000 rw-p

.. Jusr/lib/ld-linux-aarch64.so.1

... [vvar]
... [vdso]
.. lusr/lib/ld-linux-aarch64.s0.1

.. [stack]
= _/sample

@.bss variable: Oxaaaadcdb1020

@.rodata variable: Oxaaaadcdb1010
@main / Current sp: fffff64810e0

@heap memory starts at: Oxaaaaed20d6b0
@foo / Current sp: fffff64810c0



- Q2: Who (what) sets up a program in memory?
- The loader is a crucial component of the OS kernel responsible for loading a binary program (i.e.,
an executable) from storage into memory.
- Given an executable in storage, the loader reads and interprets it, and then sets up the
appropriate segments in the VAS of the process* that will execute it.

- The static segments of the process (i.e., the .text, .data, and .rodata segments) are
initialized by copying them from the target executable.

- The default dynamic segments of the process (i.e., the heap and the stack) are
initialized by the loader, used at runtime, and if needed the OS kernel intervenes to
manage them (e.g., expand them as needed).

- Heap: It's a core programming abstraction used at runtime for allocations of
dynamic variables (e.g., using malloc()).

- Itis implemented and managed by user-space libraries.

- The kernel intervenes if user-space libraries wish to increase the heap
size of a process.

- The canonical heap area (i.e., from start brk to brk) is used for
small/moderate allocations (<128 KB), because the sbrk() syscall can
only increase the program break, and is, thus, not flexible due to internal
fragmentation.

- For large allocations, mmap() is used.

- Stack: It's a fundamental programming abstraction, and every program has direct
hardware support to manage its own stack.

- The OS kernel expands the stack of a process as needed.

- The OS kernel faults with a stack overflow if a process's stack exceeds a
fixed stack limit (e.g., the default in Linux is 8MB).

- Once the executable is loaded and its segments are properly set in memory, the loader transfers
control to the executable's entry point (e.g., _start).

- If the executable is statically linked, the loader's job is complete after loading the program into
memory and transferring control to its entry point.

- If the executable is dynamically linked, after the loader has set up the initial memory layout, it
calls the dynamic linker.

- The dynamic linker is a user-space program specified in the .interp section of the
executable.

- The dynamic linker (e.g., Id.so or Id-linux.so) resolves links at runtime—e.g., if shared
libraries are used. (More on this soon.)

- The core logic of the Linux loader is here.


https://elixir.bootlin.com/linux/v6.13.7/source/fs/binfmt_elf.c

- Q3: What is the interface between the loader and executable files?

- The loader needs to know how to parse and interpret executable files.
- We need a specification to serve as the contract (interface) between executables and the loader.
- The Executable and Linkable Format (ELF) is a common standard file format for executable files,
object code, and shared libraries.
- The ELF Format
- ELF Header
- Metadata like architecture, entry point, and file type
- Offsets to the section header table and program header table
- Program Header Table (PHT) for segments
- Defines segments, which are runtime memory mappings
- Used by the loader to map the executable into the process's virtual address
space.
- Each entry in the table describes a segment (e.g., code, data, stack).
- Segments are used at runtime and determine how the binary is mapped into the
process’s virtual memory.
- Section Header Table (SHT) for sections
- Defines sections, which store file components for linking and debugging.
- Sections are not used at runtime but at compile/link time.

- Q4: What are the steps involved in translating a program written in a
high-level language to an ELF file?

- The compiler is responsible for turning a program written at a high-level language, with
expressions such as "x+= 1" into architecture-specific asm instructions such as "add $1, %eax".

- Since pure executable instructions are not enough context to inform the loader how to load an
executable in memory exactly, there are a few tools and steps involved for going from instructions
to an executable (e.g., an ELF file).

Expands Procudes asm Produces
source code instructions object file

Source Executable
B ) — o) oo — i) — 5
Other object
files /

Shared
libraries

- Preprocessor
- Input: C source code (.c) — Output: Preprocessed C code (.i)
- Task: Expands macros, includes headers, and processes preprocessor directives.



- Compiler

- Input: Preprocessed C code (.i) — Output: Assembly code (.s)
- Task: Translates high-level code into architecture-specific assembly instructions.
- We need to know a few important architecture-specific conventions
- What registers does the compiler use for argument passing during function
calls? How many, and in what order?
- What happens to the stack when you call/return to/from a function?
- What registers are caller-saved (the callee function may overwrite them) vs.
callee-saved (the callee must save and restore these registers to preserve
important values across calls)?

extern void foo(int);

int foo2(int a}{

a+=1; gcc -S hello.c
return a;
} —_—
void main(void){
foo(1);
foo2(2);

}

extern void foo(int);

int foo2(int a)f

a+=1;

return a; gcc -S hello.c
) —_—
void main(void){

foo(l);

foo2(2);

}

=» hello.s (aarch64)

foo2:
sub
str
Idr
add
str
Idr
add
ret

main:
stp

mov
mov
bl
mov
bl
Idp
ret

sp, sp, #16 // Allocates stack space in the new stack frame (with 16-bytes alignment)
w0, [sp, 12] // Stores the input argument (int) at offset 12 from sp
w0, [sp, 12] // Loads the int value into the wO register
w0, w0, 1 // Performs calculation
w0, [sp, 12] // Stores the result of the calculation back to the current stack frame
w0, [sp, 12] // Loads the result of the calculation to the w0 register (return value)
sp, sp, 16 // Restores the previous stack pointer
Il Returns to the caller (address from stack)

%29, x30, [sp, -16]! // Saves the caller's stack frame base pointer (x29) and the
/1 return address (link register: x30) on the stack, and adjusts the stack pointer

x29, sp Il Sets up a new stack frame (base pointer now points to the top of the stack)
wo, 1 // Puts 1 (argument for foo) in wO (lower 32 bits of the x0 register)

foo I/ Calls foo(1)

wo, 2 /I Puts 2 (argument for foo2) in w0

foo2 I/ Calls foo2(2)

%29, x30, [sp], 16 // Restores the caller's stack frame base pointer and return address

/I Returns to the caller (address from link register)

=» hello.s (x86_64)

foo2:
push rbp ; Saves the caller's stack frame base pointer on the stack
mov rbp, rsp ; Sets up a new stack frame (base pointer now points to the top of the stack)
mov dword ptr [rbp - 4], edi ; Stores the input argument in the current stack frame
mov eax, dword ptr [rbp - 4] ; Loads the value from the current stack frame into the eax register
add eax, 1 ; Performs calculation
mov dword ptr [rbp - 4], eax ; Stores the result of the calculation back to current stack frame
mov eax, dword ptr [rbp - 4] ; Loads the result of the calculation from the stack to the eax register
pop rbp ; Restores the caller's stack frame base pointer
ret ; Returns to the caller (address from stack)
main:
push rbp ; Saves the caller’s stack frame base pointer on the stack
mov rbp, rsp ; Sets up a new stack frame (base pointer now points to the top of the stack)
mov edi, 1 ; Puts 1 (argument for foo) in the edi register
call foo@PLT ; Calls the function foo(1), through the Procedure Linkage Table (PLT).
mov edi, 2 ; Puts 2 (argument for foo2) in the edi register
call foo2 ; Calls foo2(2)
pop rbp ; Restores the caller's stack frame base pointer
ret ; Returns to the caller (address from stack)



- Assembler

- Input: Assembly code (.s) — Output: Object file (.0)

- For the assembler, code and data are two big char arrays.

- Tasks

- Converts assembly instructions into machine code.

- For every "interesting" object (i.e., functions, variables, and labels) in the
aforementioned char arrays, stores in the symbol table an entry with its name and
offset relative to the respective section's start.

- Since the assembler does not know the final memory addresses where code or data will
reside in the process's address space, it assumes that each section (e.g., .text, .data)
starts at address zero.

- The linker later merges these arrays from different object files, resolves symbol
references, and calculates final memory addresses.

=*» gcc -c hello.s
=» readelf -r hello.o

# The per-section table of required relocations

Relocation section ".rela.text' at offset 0x258 contains 2 entries:

Offset Info Type Sym. Value Sym. Name + Addend

00000000002c 000c0000011b R_AARCHG64_CALL26 0000000000000000 foo + 0
000000000034 000a0000011b R_AARCH64_CALL26 0000000000000000 foo2 + 0

Relocation section ".rela.eh_frame" at offset 0x288 contains 2 entries:

Offset Info Type Sym. Value Sym. Name + Addend

00000000001c 000200000105 R_AARCH64 PREL32 0000000000000000 .text+ 0
000000000034 000200000105 R_AARCH64_PREL32 0000000000000000 .text+ 20

=» readelf -s hello.o

# The table of all global, exported symbols with of fset and section number
Symbol table '.symtab’ contains 13 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 O NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0O FILE LOCAL DEFAULT ABS hello.c

2: 0000000000000000 0 SECTION LOCAL DEFAULT 1 text

3: 0000000000000000 0O SECTION LOCAL DEFAULT 3 .data

4: 0000000000000000 O SECTION LOCAL DEFAULT 4  .bss

5: 0000000000000000 O NOTYPE LOCAL DEFAULT 1 $x

6: 0000000000000000 O SECTION LOCAL DEFAULT 6  .note.GNU-stack
7: 0000000000000014 0O NOTYPE LOCAL DEFAULT 7 $d

8: 0000000000000000 0 SECTION LOCAL DEFAULT 7  .eh_frame
9: 0000000000000000 0 SECTION LOCAL DEFAULT 5§  .comment
10: 0000000000000000 32 FUNC GLOBAL DEFAULT 1 foo2

11: 0000000000000020 36 FUNC GLOBAL DEFAULT 1 main

12: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND foo

=% nm hello.o

# If don't need full functionality of readelf, use hm

U foo
0000000000000000 T foo2
0000000000000020 T main



Linker

- Input: Object files (.0) and libraries — Output: Executable or library (a.out, .so)
- The linker combines multiple object files into a final executable or library.

- Tasks

Symbol Resolution: Object files contain undefined symbols (e.g., the call to foo,
marked UND); The linker finds their definitions in other object files.

Relocation: Object files have relative addresses for functions/vars (printf is just a
placeholder); The linker calculates actual memory addresses and updates
references in the binary.

- For Position Independent Code (PIC) and Position Independent
Executables (PIE), the addresses are relative to where the program will
be loaded at runtime.

- For non-PIE executables, the linker assigns absolute addresses based
on a fixed memory layout.

Section Merging: Combines sections (.text, .data, .bss, .rodata) from all object
files and creates a new layout in the final executable.
Statically linked output files

- Executable (a.out): Fully linked, ready to run.

- Library code directly into the executable: Increases executable size but
avoids runtime dependencies.

Dynamically linked output files

- Shared Library (.s0): The OS uses the dynamic linker to resolve symbols
and load libraries at runtime, which reduces executable size and memory
usage.



Q5: What are the differences between static and dynamic linking?
- Statically-linked executables can become too large and there is replication of code for common
functionality (e.g., for standard libraries such as libc or libm).
- Large in storage is OK this century. The problem is the wasted memory.

Statically-linked
executable C

instruction
instruction i€i
. . Code specific to the
Statically-linked instruction i(;npler:\er:ﬂ;ﬁo: of

executable A program B

instruction implementation of
std lib libm

instruction
instruction

instruction
instruction } Code specific to the

instruction Again =(
instruction
instruction Code specific to the
S e implementation of Statically-linked
il 113 executable B
instruction "
e Code specific to the _
instruction implementation of . :
std lib libm instruction Code specific to the
instruction [~ implementation of
instruction program B
instruction 7 o
- c;;del SpeCl:I:‘TO ‘r?e
- [~ implementation o
std lib libc
Again :-(

- Desirable design: Make standard libraries shared across executables.
- How? Dynamic linking
- Recall the page table index: Every segment in the VAS of a process maps to a region in
physical memory that holds the actual contents.
- Make replicated sections point to the same regions in physical memory.
- Shared libraries (e.g., .so files) contain reusable code that multiple programs can access
at runtime.



Dynamically-linked
Physical memory executable B

instruction
instruction
instruction

instruction
instruction
instruction

Dynamically-linked
executable A

instruction
instruction
instruction

instruction
instruction

/ instruction

Dynamically-linked
executable C

instruction

instruction
instruction

instruction
instruction
instruction

instruction
instruction
instruction

instruction
instruction
instruction

instruction
instruction
instruction

instruction
instruction
instruction
instruction
instruction
instruction

instruction
instruction
instruction

- Good idea. Implementation is another drama...

- Shared libraries in Linux typically have the .so (shared object) extension.

- These libraries contain reusable code that can be dynamically loaded at runtime by
multiple programs simultaneously, which saves memory at runtime and disk space in
storage.

- Who finds the symbols at runtime? In dynamically-linked executables, symbols are resolved
dynamically by the dynamic linker.

- The dynamic linker is specified in the .interpret section of the dynamically-linked
executable.

- InLinux, it is at /lib/ld-linux.so.2, or at /lib64/ld-linux-x86-64.s0.2.

=» |dd /bin/ls

linux-vdso.so.1 (0x0000ffff93223000)

libselinux.so.1 => /lib/aarch64-linux-gnu/libselinux.so.1 (0x0000ffff33160000)
libc.s0.6 => /lib/aarch64-linux-gnu/libc.so.6 (0x0000ffff92fb0000)
/lib/Id-linux-aarch64.so0.1 (0x0000ffff931ea000)

libpcre2-8.s0.0 => /lib/aarch64-linux-gnu/libpcre2-8.s0.0 (0x0000ffff92f10000)

- The dynamic linker follows a specific order to locate required shared libraries.

- 1. LD_PRELOAD environment variable: Forces the dynamic linker to load
specified libraries before any others.

- 2. LD _LIBRARY_PATH environment variable: Specifies directories to search
before paths embedded in the binary..

- 3. rpath: A path embedded in the binary at link time, used if runpath is not set.

- 4. runpath: Another embedded path, searched after LD_LIBRARY_PATH.

- 5. System cache (/etc/ld.so.cache): A lookup table maintained by Idconfig.

- 6. Default system directories, such as /lib and /ust/lib.


http://ld-linux-x86-64.so/

The dynamic linker uses a combination of two special tables that are laid out in each
dynamically-linked executable.

Code:

call func@PLT

The procedure linkage table (PLT) provides a mechanism for resolving external
function calls dynamically.
The global offset table (GOT) stores the actual memory addresses of these
external symbols.

GOT:

GOT [n]:

P <addr> —

Code:

call func@PLT

PLT:

PLT[0]:

call resolver

When a program first calls an external function, the PLT stub triggers the dynamic
linker to resolve the function's address, which is then cached in the GOT, allowing
subsequent calls to use the resolved address directly and efficiently.

GOT:

GOT (n):

1'5"'1'[nj: -

jmp *GOT[n]
prepare resolver
jmp PLT[O0]

P <addr>—

Code:
func: ¢——

Position Independent Code (PIC) allows executable code to run from any memory
address by using relative addressing instead of absolute memory references. (See this
amazing post on with lots of details.)

10


https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries

