What is synchronization?

- Synchronization is the coordination of concurrent operations so that the interleaving of their
execution follows a well-defined ordering—as opposed to being non-deterministic, potentially
introducing erroneous program behaviour at runtime.

When do we need synchronization?

- Given two operations p1 and p2 which are executed concurrently and have a dependency (e.,g.,
p2 consumes the result produced by p1) such that p1 must always "happen before" p2,
synchronization mandates that t,(i) < t,(i) v i € [1, n] where t,(i) is the time when p1 completes its

i-th execution instance and t,(i)

is the time when p2 starts its i-th execution instance. In other

words, synchronization is necessary to serialize all executions of two (or more) interdependent
concurrent operations so that they adhere to a well-defined ordering of execution.

What goes wrong without synchronization?

- Without synchronization, there is no mandate on the execution interleaving of concurrent
operations, and this may lead to erroneous program behavior.
- Race conditions are among the most notorious software errors, which occur when the execution
interleaving of concurrent operations leads to erroneous program behavior.
- Race conditions manifest mostly due to data races, semantic ordering errors, or weak
memory consistency models.

- Data races: A program contains a data race iif two different threads (1) access the same
memory location concurrently, (2) at least one of these accesses is a write and at least
one of the accesses is not atomic, and (3) neither happens before the other—i.e., there is
no "happens-before" relationship. Any such data race results in undefined program
behavior and may lead to a data race error. (See the ISO/IEC 9899:2011(C11), Section
5.1.2.4/25, on multi-threaded executions and data races.)

Race condition due to data race

int total = 0;
void *add(void *arg) {

for (inti=0;i< 1e6; ++i)
++total;
return NULL;

}

void main() {
pthread tt1,t2;

pthread create(&t1, NULL, add, (void *) NULL);
pthread create(&t2, NULL, add, (void *) NULL);
pthread join(it1, NULL),

pthread join(t2, NULL);

print£(" ", total);

total = 0;

pthread create(&t1, NULL, add, (void *) NULL);
pthread join(t1, NULL);

pthread create(&t2, NULL, add, (void *) NULL);
pthread join(t2, NULL),

print£(" ", total);

=» obdjump -d ./counter

0000000000001159 <add>:

1159:

115a

116a:
1170:
1173:

1179:
117d:
1184:
1186:

118b:
118¢c:

mov %rsp, %rbp
115d:
1161:
1168:

push %rbp # Save base pointer to stack
Set up new stack frame
mov %rdi, -0x18(%rbp) # *arg = %rdi
movl $0x0, -0x4(%rbp) #i=0
jmp 117d <add+0x24> # for-loop start

Data race!
mov 0x2ebc(%rip), %eax # %eax « total
add $0x1, %eax #

mov %eax, 0x2eb3(%rip) # total — %eax

Y%eax += 1

addl $0x1, -0x4(%rbp) #i+=1

cmpl $0xf423f, -0x4(%rbp) # loop counter compare
jle 116a <add+0x11>
mov $0x0, %eax

pop rbp # Restore stack
ret # Return to caller

for-loop jump

rval = %eax

=» git:(master) X
Total-1: 1011367
Total-2: 2000000

= git:(master) X
Total-1: 1011367
Total-2: 2000000

=» git:(master) X
Total-1: 1028085
Total-2: 2000000

= git:(master) X
Total-1: 1011197
Total-2: 2000000

=» git:(master) X
Total-1: 1018502
Total-2: 2000000

= git:(master) X
Total-1: 1013853
Total-2: 2000000

./counter

./counter

./counter

./counter

./counter

./counter

https://www.iso-9899.info/n1570.html?utm_source=chatgpt.com

Semantic ordering errors: A program contains a semantic ordering error if, at runtime,
there exists some feasible interleaving of its concurrent operations that leads to
unintended, erroneous program behavior.

Benign race condition due to semantic ordering error (w/o data race)

void”* funcl(void® ar
printe(" (" ot =+ concurrency git:(master) X ./nosync

return NULL; 1
2
}
void”* func2(void” arg) { -
printf("2\n"); 1
return NULL; 2

concurrency git:(master) X ./nosync

}
int main(veid) {
pthread tt1,t2;

concurrency git:(master) X ./nosync

pthread create(&t1, NULL, funcl, NULL);

pthread create(&t2, NULL, func2, NULL);

-
1
2
=» concurrency git:(master) X ./nosync
1

2

pthread join(t1, NULL);
pthread join(t2, NULL),

= concurrency git:(master) X ./nosync
return 0; 1
2

Semantic ordering errors are race conditions that do not necessarily involve a
data race: Even when there is no access to the same memory location, if there is
no synchronization mechanism to mandate the execution interleaving of
concurrent operations, then a race condition may occur as a result of undefined
program behavior.

Undefined program behavior is usually, but not always, problematic: What will the
following program print?

The above program's undefined behavior does not seem too harmful; however,
there have been cases where a similar pattern of undefined program behavior
had detrimental consequences.

A notorious example is the Therac-25 computerized radiation therapy machine,
designed to treat cancer patients by delivering precisely calibrated doses of
radiation: Between 1985 and 1987, at least six patients (at the Kennestone
Regional Oncology Center, Marietta, GE, USA) received massive overdoses of
radiation, leading to severe injuries and deaths. (See here for more details.)

How did this happen?

- Due to the lack of proper synchronization in the software controlling the
machine, an unexpected input by the operator controlling the machine
could lead to an ordering error where the high-power radiation beam
mode was set (p1) after the filter control was determined and finalized
(p2): That is, for the operations p1 and p2 with an implicit
"happens-before" relationship, there could be cases where t,(1) [mode
setting] > t,(1) [filter setting dependent on mode setting] did not hold.

- Indeed, the software had more than one bugs that could lead to
erroneous behavior: As shown below, there is a data race on the "mode"
flag (and a secondary data race on the "input_finalized" flag) as well as a
logical error because changing the "mode" flag must not be allowed after
the "input_finalized" flag was set.

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Serious race condition due to semantic ordering error (w/ data race)

int mode = 0; Il 1: Low-power; 2: High-power
int filter_engage =0; // O: Filter not engaged; 1: Filter engaged
int input_finalized = 0; // Has operator finished input?

void *filter control(void *arg){
while (linput_finalized) {
sched_yield();

}
usleep(100);

if (mode ==2)
filter_engage = 1;
else
filter_engage = 0;

return NULL;

}

void beam activate(){
if (mode == 2 && filter_engage == 0)
printf("@
else

printf("@ ");
}

int main(void){
pthread t filter_control_t;

pthread create(&filter_control_t, NULL, filter control, NULL)

usleep(100); // Time window 1: operator does initial setup

mode = 1;

input_finalized = 1;

usleep(100); // Time window 2: operator does final edits
mode = 2;

pthread join(filter_control_t, NULL); // Control logic completed
beam_activate();

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ Safe setup.

=» concurrency git:(master) X ./therac25
@ safe setup.

=» concurrency git:(master) X ./therac25
@ Treatment with high-power beam and no filter in place :-(

- Weak memory consistency models: In order to hide store latency and avoid processor
stalls, modern multi-processor CPUs use write buffers to internally hold write operations
until the memory system can process them—that is, until the cache line has read-write
coherence permissions. This hardware-level optimization introduces a memory model
(i.e., a set of allowed behaviors) that violates the well-defined semantics of sequential
consistency and, without synchronization, it allows unforeseen reorderings of operations
that may lead to erroneous program behavior at runtime.

- Sequential consistency (SC) [easy to reason; impractically slow]
- Every load from a memory address gets its value from the last store before it to the
same address in global memory. (See "How to Make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs," by Leslie Lamport on Sept. 1979.)

- To achieve SC the hardware must wait for the effects of each instruction to become
visible on all cores before starting the next instruction. (The first level of shared
memory is the L3 cache with an overhead of at least 30 cycles for access time.)

https://lamport.azurewebsites.net/pubs/multi.pdf
https://lamport.azurewebsites.net/pubs/multi.pdf

- Total Store Order (TSO) [fast; more difficult to reason: departs from SC]

- Modern multi-core CPUs implement cache coherency protocols so that core-local
caches (e.g., L1 and L2 caches) are coherent across all cores, and no processor
uses outdated data. Therefore, for a store to be committed to the core-local
caches, it first needs to wait for the cache lines to be invalidated on all other cores.

- To avoid this latency, modern CPUs use processor-internal First-in First-out (FIFO)
write buffers to hold committed store operations before they complete (i.e., before
being written to the cache).

- This hardware-level optimization introduces a memory model that violates the
semantics of SC, because, although it enforces most of the ordering conditions for
a memory model to be considered sequentially consistent, it allows "store — load"
reorderings between different cores.

- Assume variables a and b are zero-initialized: can the following program print "00"?

Example of how TSO violates SC semantics and leads to race conditions

Thread 2

Write buffers are
processor-internal state,
invisible to other cores

Hardware is responsible
to keep in-sync data
across all cores

Shared
across all cores

- Q4: How do we design synchronization primitives?

- Recall what we are trying to achieve: Ensure that, despite all sources of non-determinism, the
execution interleaving of concurrent operations does not lead to unforeseen, erroneous program
behavior at runtime.

- Enforcing an explicit interleaving ordering among all concurrent operations of, say, multi-threaded
programs is impossible without control on the dispatching of asynchronous events (such as
interrupts) that hint the OS kernel to preempt a blocked execution context (e.g., a process or
thread that is waiting for 1/0O) and execute another one that is ready to run.

- Even if the OS kernel were to give us such control, reasoning about all possible scheduler
interleavings would be impractically hard because the state space is enormous. (Completely
disabling preemption and running each task to completion could make the state space tractable,
but a system that does not support concurrency would appear prohibitively non-responsive, and
thus unpleasant to use.)

- A practical compromise to design correct concurrent programs would be to, somehow, obtain a
guarantee that some "happens-before" relationship exists among the execution interleaving of
their concurrent operations at runtime. That is, that no concurrent operation starts in the middle of
another, leaving the previous one in a partial or incomplete state.

This guarantee may seem trivial; yet, it addresses one of the main sources of race
conditions—namely, data races. Recall the definition of a data race: "...at least one
concurrent memory access is not atomic, and neither happens before the other..."
Therefore, if we establish that among concurrent operations involving accesses on a
shared memory location, one of them every time executes to completion before any other
starts, then, by definition, no data race exists among none of them.

Although we do not explicitly enforce a particular "happens-before" ordering in the
interleaving of operations, it is guaranteed that one such ordering exists.

- [Mutual exclusion / Atomicity] The fundamental design principle followed to implement
programs whose concurrent operations are guaranteed to satisfy some "happens-before"
interleaving ordering upon execution is called mutual exclusion.

Conceptually, it is as simple as respecting the following principle: Insofar as any thread
operates on a shared resource (e.g., a memory location), no other thread is allowed to
execute any operation on the same shared memory location.

Technically, the software primitive required to provide mutual exclusion is called
atomicity: all concurrent operations, insofar as they start execution, it is guaranteed to
execute to completion without being interrupted in an incomplete or partial state; or, don't
start execution until it is guaranteed to execute to completion.

Atomicity requires hardware support: That is, architecture-specific atomic instructions
that bundle together more than one memory-related operation, which are guaranteed to
be executed as a whole to completion.

Atomicity of individual instructions (not useful for mutual exclusion; good info)

- Most modern architectures guarantee that aligned writes of word-sized values
(e.g., 32-bit or 64-bit) are atomic, and no other threads will ever see a
"half-written" value, even if multiple writes occur concurrently.

- However, if the operation isn't atomic, writing unaligned values (e.g., crossing a
cache line or word boundary) may result in word tearing.

Atomicity of composite instructions (see the C11 standard for atomics)
- x86_64 atomic instructions
- xadd [mem)], reg; Atomically adds the value or reg at [mem], and returns
the old value of [mem]. (Solves data race; example-1/ Q3.)
- xchgb reg, [mem]; Atomically exchange the values: assign the value of
reg to [mem], and return the old value of [mem].

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://en.cppreference.com/w/c/atomic.html

- cmpxchg [target], %rbx; Compare and conditionally exchange.

- If [target] == %rax then [target] := %rbx and %zf := 1,
else rax := [target] and %zf =0
- aarch64 atomic instructions

- ldadd %w0, %w1, [target]; Atomic addition.
- Atomic ([target] += %wO0 and %w1 := old [target])

- cas %w0, %w1, [target]; Compare and conditionally swap.
- w0 := [target]; if [target] == w0 then [target] := Y%w1

- Atomicity guarantees mutual exclusion for the memory-related instructions bundled
together and solves data races among them, but does not allow us to express realistic
operations because the bundled instructions are just very few.

- What can we do? Use atomic instructions as a low-level primitive to build a higher-level
primitive (called locking) appropriate for mutual exclusion on arbitrarily long sequences of
instructions (called critical sections).

[Critical sections / Locking] A critical section is a sequence of instructions that access some
shared state (such as a common memory location or a system's resource) and ought to be
executed by only one thread at a time. In concurrent programs, critical sections prevent data
races and ensure correct synchronization between threads.

- We design critical sections with the following requirements in mind

- Safety (mutual exclusion): At most one thread in the critical section.

- Liveness (progress): If multiple threads attempt to enter the critical section, one
must be allowed to proceed.

- Bounded wait (starvation-free): If a thread is waiting to enter the critical
section, it must eventually enter.

- We design critical sections with the following desirable properties

- Efficiency: Don't unnecessarily waste resources while waiting; instead,
voluntarily yield the CPU. That is, avoid busy waiting.

- Performance: The overhead of entering and exiting the critical section is small
relative to the work being done within it.

- Fair: All threads must wait approximately the same outside of the critical section.

- We implement critical sections using a software primitive called locking: A token-based
synchronization scheme with the following properties

- (1) While a thread cannot obtain the token, it waits outside the critical section,
trying to get the token.
- (2) When a thread gets the token, it enters the critical section and executes the
corresponding instructions while everyone else waits outside the critical section.
- (3) When a thread finishes executing instructions in the critical section, it releases
the token for anyone else to get it.
Critical sections and locking enable us to write multithreaded programs that take the most out of
modern multiprocessor CPUs by dividing jobs into two parts: a critical section part that must be
executed serialized, as if the hardware were designed for uniprogramming, and the remainder of
the job that can be executed concurrently with support for multitasking.

Using locking to provide mutual exclusion on the critical section

int total = 0;
void *add(veid *arg) {

for (inti=0;i< 1e6; ++i) {
pthread mutex lock(&l);
++total;
pthread mutex unlock(&l);

}

return NULL;

b

void main() {
pthread tt1,12;

pthread create(&t1, NULL, add, (void *) NULL);
pthread create(&t2, NULL, add, (void *) NULL);
pthread join(t1, NULL);

pthread join(t2, NULL)

printf(" " total);

total = 0;
pthread create(&t1, NULL, add, (void *) NULL);
pthread join(t1, NULL);

pthread create(&t2, NULL, add, (void *) NULL);
pthread join(t2, NULL)

printf(" ", total);

- Q5: How do we implement locks?

=» obdjump -d ./counter

0000000000001159 <add>:

1159:
115a:
115d:
1161:

push %rbp # Save base pointer to stack

mov %rsp, %rbp # Set up new stack frame
mov %rdi, -0x18(%rbp) # *arg = %rdi

movl $0x0, -0x4(%rbp) #i=0

1168: jmp 117d <add+0x24> # for-loop start

118e: lea 0x2eeb(%rip),%rax

1195: mov %rax,%rdi Get the lock
1198: call 1070 <pthread_mutex_lock@plt>

116a: mov 0x2ebc(%rip), %eax # %eax « total .

: 0 o - Critical
1170: add $0x1, %eax # %eax +=1 ti
1173: mov %eax, 0x2eb3(%rip) # total « %eax Lo
11ac: lea O0x2ecd(%rip),%rax Rel
11b3: mov %rax,%rdi 2L
11b6: call 1040 <pthread_mutex_unlock@plt> the lock
e e $0x1 Ox4(%rbp) AR
117d: cmpl $0xf423f, -0x4(%rbp) # loop counter compare
1184:jle 116a <add+0x11> # for-loop jump
1186: mov $0x0, %eax # rval = %eax
118b: pop rbp # Restore stack
118c: ret # Return to caller

- What we are trying to implement is an API that supports the following operations

- Initialize a shared lock variable

- Acquire (lock) the lock variable before entering the critical section

- Release (unlock) the lock after exiting the critical section

- Locks are a shared resource themselves, and therefore, in implementing them, we need

- A lock operation before entering the critical section: Atomically checks the state of
the lock, and if it is free, sets its state to indicate that the lock has been acquired.

- An unlock operation after exiting the critical section: Resets the state of the lock to
indicate that it has been released, and does so, in total program order—that is, the unlock
operation is sequentially consistent with respect to all memory operations that precede it,
to ensure all critical-section operations become visible before the lock appears released.

The canonical way to implement a portable lock operation is with a macro called test_and_set,
which atomically reads the value of a memory address and also write a value to it, in one go.

- Example test_and_set implementation in x86
static inline uint8_t test_and_set(uint8_t *lock) {
uint8 told =1;
/I xchgb: Exchanges 8-bit values (b = byte)
/I +q: Tells the compiler that old is both an input and an output in a general register.
/I +m: Memory operand, also read-write.
/I "memory" clobber: Tells the compiler not to reorder memory
around this inline assembly.
__asm___ volatile (
"xchgb %0, %1"
:"+g" (old), "+m" (*lock)

: "memory"

)
return old;

}
The canonical way to implement a portable unlock operation is with a class of macros that
leverage architecture-specific instructions, called memory barriers, which explicitly prevent
compiler- and processor-dependent reordering of memory operations.
- x86 memory barrier instructions (relevant Linux kernel macros)
- mfencle: Prevents reordering of loads and stores, and ensures that all memory
reads and writes before the mfence, complete before any that follow.
- Ifence: Prevents reordering of loads before loads, and ensures all prior loads
complete before any subsequent load.
- sfence: Prevents reordering of stores before stores, and ensures all prior stores
complete before any subsequent store.

- aarch64 memory barrier instructions (relevant Linux kernel macros)
- DMB: Prevents any memory reordering.
- DSB: Prevents any memory reordering and waits for instruction completion.
- ISB: Prevents instruction pipeline reordering
With the above, we can implement a primal, but safe (i.e., guaranteed mutual exclusion), version
of a lock, known as a raw spin lock.
- Raw spinlock implementation
typedef uint8_t raw_spinlock_t; // Define a simple spinlock type
raw_spinlock_t lock = 0; /I 0 = unlocked, 1 = locked

void acquire(raw_spinlock_t *lock) {
/I Spin while the lock is not free
while (test_and_set(lock)) ;

}

void release(raw_spinlock_t *lock) {
/I Ensure memory ordering
__asm__ volatile("mfence" ::: "memory");
*lock = 0;

https://github.com/torvalds/linux/blob/e271ed52b344ac02d4581286961d0c40acc54c03/arch/x86/include/asm/barrier.h#L22
https://github.com/torvalds/linux/blob/e271ed52b344ac02d4581286961d0c40acc54c03/arch/arm64/include/asm/barrier.h#L60

- Q6: What are the most common types of locks?

- Depending on whether the locking implementation continuously tries to acquire the lock
regardless of whether it is available or not, there are two types of locks: spin locks (i.e., those
that spin until acquiring the target lock) and sleeping locks (i.e., those that voluntarily preempt
themselves and release the processor when the target lock in not free).

- Spin locks: The raw spin lock implementation shown before is the most simplistic—yet
correct—version of locks that is typically used as a primitive to build higher-level locking
mechanisms addressing performance and fairness shortcomings.

Raw spinlocks have no explicit fairness guarantee: A thread may acquire the lock multiple
times, preventing others from making fair progress.
Not appropriate for unicore CPUs: The thread spinning to get an unavailable lock
unnecessarily consumes processor cycles (busy-waiting).
Lots of traffic over the memory bus (especially when there are multiple spinners).
Simple to implement: One memory location for arbitrarily many processors.
Easy to address a few of their above shortcomings as long as (1) the critical section is
small (such that the overhead of context switching would be more) and (2) no sleep
occurs while holding the lock.

- Disable preemption before trying to acquire the lock = solves busy-waiting

- Use a simple counter to keep track of whose thread the turn is to get the lock

next = solves fairness

Sample spinlock implementation from the Linux kernel

spinlock(...) // lock API

raw_spinlock(...) // wrapper
raw_spinlock(...) // wrapper
raw_spinlock(...) // disables pre-emption
do_raw_spinlock(...) // invokes arch-specific implementation
arch_spinlock(...) // invokes queued spinlock
queued_spinlock(...) // wrapper
cmpxchg_acquire(...) // get the lock if free

gueued_spinlock_slowpath(...) / or enqueue

The actual implementation uses a queue to solve the fairness issue of raw spinlocks, and
also disables preemption on the local processor.

Since preemption is disabled, a thread sleeping while holding a spin lock will not only hog
the local processor but will also prevent progress of other threads (running on other
processors) trying to acquire the lock. Furthermore, spinlocks may be used with interrupts
disabled, and sleeping while holding a spinlock may break real-time guarantees, making
the system appear as "not responsive".

- Sleeping locks: Contrary to spin locks, sleeping locks voluntarily yield the processor when the
target lock cannot be acquired because it is not free.

Sleeping locks are appropriate for mutual exclusion on longer critical sections and also
allow the use of functions that may potentially sleep.

Voluntarily yielding the processor when the target lock is not free solves the busy-waiting
issue, but introduces the requirement to schedule back in the right execution context
when/if the requested lock becomes available in the future. Otherwise, the
implementation is not starvation-free.

https://elixir.bootlin.com/linux/v3.17/source/include/linux/spinlock.h#L301
https://elixir.bootlin.com/linux/v6.15.1/source/include/linux/spinlock.h#L217
https://elixir.bootlin.com/linux/v6.15.1/source/include/linux/spinlock_api_smp.h#L47
https://elixir.bootlin.com/linux/v6.15.1/source/include/linux/spinlock_api_smp.h#L130
https://elixir.bootlin.com/linux/v6.15.1/source/include/linux/spinlock.h#L184
https://elixir.bootlin.com/linux/v6.15.1/source/include/asm-generic/ticket_spinlock.h#L100
https://elixir.bootlin.com/linux/v6.15.1/source/include/asm-generic/qspinlock.h#L103
https://elixir.bootlin.com/linux/v6.15.1/source/include/asm-generic/qspinlock.h#L111
https://elixir.bootlin.com/linux/v6.15.1/source/include/asm-generic/qspinlock.h#L103

Internally, the implementation of sleeping locks uses a queue to keep track of blocked
(sleeping) execution contexts waiting to be scheduled back in when the target lock
becomes available.

The internal state of sleeping locks (e.g., the queue keeping track of who is waiting on the
lock to become available) must be protected by a spinlock—and this is how "spinlocks
are used as a low-level primitive to implement higher-level locking mechanisms."

The most typical sleeping lock in the Linux kernel is what is called a mutex, and is
implemented here.

Example mutex implementation

/I Define a mutex type

typedef structmutex t{
int lock = 0;
raw spinlock tguard =0;
queue_ t queue = NULL;

} mt;

void acquire(mutex t *lock) {
spin_lock(mt->guard)

// Lock is being held; voluntarily yield the processor
if (!Imt-> lock == 0) {

enqueue(mt->queue, self)

spin unlock(mt->guard)

sched yield();

}else {
mt->lock = 1
spin_unlock(mt->guard)
}

}

void release(mutex_t "lock) {
spin_ lock(mt->guard)

// Release the lock and let other know

mt->lock = 0

if (lqueue empty(mt->queue)) {
wake up(dequeue(mt->queue))

}

spin_unlock(mt->guard)

}

10

https://elixir.bootlin.com/linux/v6.15.1/source/kernel/locking/mutex.c

- Q7: Hybrid user-space/kernel-space locks in Linux?

All the lock implementations discussed so far require involvement of the OS kernel, and therefore
their use from user space will neccessarily incur the additional overhead of performing syscalls.
Can we avoid this? Recall why / when the kernel's involvement is necessary

- In the case of spinlocks, the kernel needs to keep track of the spinners so that the
implementation has some minimum fairness guarantees.

- In the case of sleeping lock, the kernel needs to keep track of the preempted (sleeping)
threads in order to wake them up accordingly when the lock becomes available.

The key observation is that when there is no contention on a target lock and the requesting
thread does not need to be put on a wait queue, then, the kernel's involvement is not necessary.
A hybrid user-space/kernel-space could be implemented such that it atomically test and modifies
in user-space a value indicating that the lock was acquired if it were free; and only fall back to
kernel-space functionality when contention arises and the requesting thead must be preempted.
The futex is special Linux primitive that allows user-space programs to sleep based on the value
of a user-space memory address without forcing a kernel-space lock object. (See "East Userlevel
Locking in Linux," by H. Franke and R. Russell at Ottawa Linux Symposium, 2002.)

- Drastically cuts the overhead compared to using a purely syscall-based locking primitive.

- With futex, the actual lock state is in userspace memory (atomic_int, etc.)

- The kernel only needs to be aware of this memory address, and only check for a value
change—which requires not special functionality or per-task state to be tracked.

The two most important operations exposed by the futex primitive are futex_wait and futex_wake.

- futex_wait(addr, val) blocks while the value at the user-space memory address addr
equals to the integer value val.

- futex_wake(addr, num) wakes up up to num threads blocked waiting for a value
changed on the value stored at the user-space memory address addr.

- Since addr. is a virtual address of a shared variable, many processes may map the same
shared memory at different virtual addresses and the futex implementation cannot rely on
addr. to correlate futex objects with the corresponing user-space virtual addresses.
Therefore, internally, the futex implementation converts addr into a (physical page frame,
offset) pair to uniquely identify futexes across processes, since the underlying physical
location backing the shared variable would be unique system-wide.

11

https://kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf

Example futex, implementation and use

struct futex q{
struct task struct "task;
struct plist node list;
int *uaddr,;

k%

struct futex hash bucket {
spinlock t lock;
struct plist head chain;

I

static struct futex hash bucket *futex_hash(unsigned long addr);

I/ If the value at addr is val, put the current thread to sleep
int futex_wait(int *uaddr, int expected) {
int val;

struct futex hash bucket *hb = hash_futex(uaddr);

spin_lock(&hb->lock);

val = atomic_read(uaddr);

if (val I= expected)
return -EAGAIN;

struct futex qq={

task = current,

.uaddr = uaddr
k
enqueue(&hb->queue, &q);
set_current_state(TASK INTERRUPTIBLE),
spin_unlock(&hb->lock);
schedule(); // Sleep until woken

spin_lock(&hb->lock),
dequeue(&hb->queue, &q);
spin unlock(&hb->lock);
return Q;

}

I/ Wake up nr_wake threads waiting on addr
int futex wake(int *uaddr, int nr_wake) {

struct futex hash_bucket *hb = hash_futex(uaddr);

int woken = 0;

spin_lock(&hb->lock),
list for each entry(q, &hb->queue, list) {
if (g->uaddr == uaddr) {
wake_up_ process(g->task);
woken++;
if (woken >= nr_wake)
break;
}
}

spin unlock(&hb->lock);
return woken;

typedef struct {
atomic_int lock; // 0 = unlocked, 1 = locked
}mutex_t;

voidmutex init(mutex_t *m){
atomic_store(&m->lock, 0);

}

voidmutex_lock_slow(mutex_t *m){
int expected;

while (1){
expected =0
futex wait(&m->lock, 1); // Wait until lock is released
if (atomic_compate_exchange_strong(&m->lock, &expected, 1))
return;
}
}

voidmutex lock_ fast{mutex t*m){
int expected = 0;

if (atomic_compate exchange strong(&m->lock, &expected, 1))
return;

while (1) {
expected = 0;
futex wait(&m->lock, 1); // Wait until lock is released
if (atomic compate exchange strong(&m->lock, &expected, 1))
return; - B -
}
}

void mutex unlock(mutex_t *m){
atomic_store(&m->lock, 0);
futex wake(&m->lock, 1); // Wake one waiter

}

= git:(master) X ./mutex_futex 1000000 1
Using 1 threads to perform 1000000 lock-unlock operations
contented: 0, uncontented: 1000010, total: 1000010

Median overhead of slow vs fast futex-based lock: +119.7% (£11.0% 95% CI)

= git:(master) X /mutex_futex 100000 4
Using 4 threads to perform 1000000 lock-unlock operations
contented: 8541135, uncontented: 31458875, total: 4000010

Median overhead of slow vs fast futex-based lock: +78.4% (+2.5% 95% CI)

12

- Q8: What is fine-grained locking?

Where are we with locks, so far?

Putting to sleep a thread trying to lock an unavailable lock and waking it up when the
target lock becomes available addresses the busy-waiting problem.

Waking up the appropriate thread is implemented by maintaining a per-lock queue of
waiting threads, which guarantees fair treatment among competing threads.

When the cost of context switching is more than the cost of the commands within the
critical section, the use of a spin lock is preferable instead of a sleeping lock

When there is no contention (i.e., the lock is free), keep the fast path in user space to
avoid making an unnecessary user-to-kernel mode switch (and back).

Spin locks and sleeping locks are coarse-grained locks in the sense that they give the requesting
thread no ability to express whether the target lock will be obtained for reading or for writing.

The semantics of the operation within the critical section can help decrease contention if, say, for
example, some data is read more often than written because multiple tasks wish to search on a
data structure and do not necessarily wish to mutate it.

A read-write spin lock (rwlock) is the most typical fine-grained lock, which allows multiple tasks
to hold it in a "read" state, or one task to hold it in a "write" state.

Readers do not need to serialize access with each other: If only readers exist, the path is
lock-free with minimal contention to mark the "read" state of the lock..

Writers serialize access with other writers as well as with readers: If one or more writers
exist, there is contention among writers with each other as well as with readers.

Example read-write spin lock, implementation and use

typedef struct {

} rw_spinlock_t;

spinlock_t write_lock;

volatile int readers; I Define a read-write spinlock type

static rw_spinlock_t my_lock;

void rwlock_init(rw_spinlock_t *lock) { rwlock_init(&lock);

}

lock->write_lock = 0;

lock->readers = 0; int value = 123;

void reader(void)

void read lock(rw spinlock t *lock) { { .
while (1){ - - struct my_data *p;
while (lock->write_lock) // Wait until no writer is holding the lock read_lock(&my_lock); Il Acquire read lock
) printk(" ,value); // Shared access
d lock(&l lock); /I Rel lock
/l Use lock xadd to atomically increment the reader's count) read_unlock(@my_lock); elease loc

}

__sync_fetch and add(&lock->readers, 1);

X . X void writer(void *arg)
/I Re-check in case a writer acquired the lock, and backtrack {

if (lock->write_lock) {
sync fetch_and sub(&lock->readers, 1);
continue;
} }
break; /I Acquired read lock successfully

}

write lock(&my_lock); /I Acquire write lock
value = *(int*) arg; /| Exclusive access
write_unlock(&my_lock); // Release lock

int main() {
pthread t t1,t2, 3, t4;

void read unlock(rw_spinlock_t *lock) { intval = 10;

}

sync_fetch and sub(&lock->reader_count, 1); .
- - - - pthread create(&t1, NULL, reader, (void *) NULL);

pthread create(&t2, NULL, writter, (void *) &val);

void write lock(rw_spinlock t *lock){ val += 1;
/1 'Spin until we get the lock pthread create(&t3, NULL, writter, (void *)&val);
while (test_and_set(&lock->write_lock)) ; pthread create(&t4, NULL, reader, (void *) NULL);

[l Wait for readers to drain

while (lock->reader_count > 0) ; pthreadfj_m_'nm’ NULL):

pthread join(t2, NULL);

} pthread join(t3, NULL);

void write unlock(rw_spinlock_t *lock) { pthread join(i4, NULL);
__asm__ volatile("sfence" ::: "memory"); }

}

lock->write_lock = 0;

13

- Q9: How is lockless synchronization implemented in the Linux kernel?
- Fine-grained read-write locks decrease contention because, when only readers exist, they don’t
block each other and can all acquire the read lock concurrently. However, some contention still
remains, and as the number of readers increases, performance degrades.

There is a global counter for readers: __sync_fetch_and_add(&lock->readers, 1) targets
the same memory location = On multi-core or NUMA systems, this causes cache-line
bouncing and leads to slowdowns as reader threads scale up.

One writer can block all readers: If a writer holds the lock, all incoming readers spin on
while (lock->write_lock) = contending on a shared variable.

Atomic operations still serialize under the hood: Even though readers don’t “lock,” each
atomic add/sub still causes coherence traffic and cache-line invalidations between cores.

- To further minimize contention, the Linux kernel uses a special synchronization primitive called
Read-Copy-Update (RCU): RCU allows readers to access data concurrently without locks, while
ensuring safe updates by writers. (Detailed description here.)

- Fundamentally, RCU is not a traditional lock but rather a lockless synchronization mechanism.

- Readers: rcu_read_lock() and rcu_read_unlock() are extremely lightweight, safe to use in
interrupt context and preemption-disabled sections = Multiple readers can execute
entirely concurrently, and the use of thread-local storage prevents cache bouncing.

- Writers: Allocate and initialize a new copy of the data, and then call synchronize_rcu() to
wait until all pre-existing readers have finished.

- In the following toy example, the RCU API enforces correctness on readers' concurrency and
memory ordering, but a spinlock must be used to protect writers' concurrency. [Q: Why?]

Example RCU lock, implementation and use

#define MAX THREADS 16

#define rcu assign_pointer(p, v)\
atomic_store_explicit(&(p), (v), memory_order release)

#define rcu_dereference(p)\
atomic_load_explicit(&(p), memory_order_acquire)

// Thread-local index
__thread int rcu_thread_id;

// Reader state array
atomic_int readers_state[MAX_THREADS];

void rcu_read_lock(){
__sync_fetch_and set(&readers_state[rcu_thread_id], 1);
}

void rcu_read_unlock(){
__sync_fetch and set(&readers_state[rcu_thread_id], 0);
}

void synchronize lock(){
for (inti = 0: i < MAX_THREADS; ++i) {
// Wait for all reader threads to exit their critical section
while (_ sync fetch and add(&readers_statefi], 0)) {
sched_yield();
}
}
1

struct data {

int val;

struct rcu_head rcu;
h

static struct data _ rcu *global_ptr;
raw_spinlock_t writers_lock = SPIN LOCK UNLOCKED;

void reader(void)

{
rcu_read_lock(), /! Start read-side critical section
printk("Value = %d\n", ptr->value);
rcu_read unlock(); // End read-side critical section

}

void writer(void)

{

struct data *old, *new;

new = kmalloc(sizeof(*new), GFP_KERNEL);
new->value = 42;

spin_lock(&writer_lock);
old = rcu dereference(global_ptr); /I Get current
rcu_assi_gn_pointer(global_ptr, new); // Publish new
synchronize_rcu();

spin_unlock(&writer_lock);

kfree(old); // Free old value safely

/f Only one writer

// Wait for readers

14

https://docs.kernel.org/next/RCU/whatisRCU.html#id6

Q10: What is a deadlock?

The kernel and the respective system libraries are responsible for the correctness of the locking

mechanism implementations, while programmers are responsible for using locks correctly.

The most common error when using locks is what is called a deadlock: an unrecoverable error
where all members of some group of entities (e.g., threads or proccesses) wait indefinitely on
each other and cannot make progress because each waits for another member of the group,
including itself, to take action, such as, for example, releasing a lock.

There are four necessary preconditions for a deadlock on a shared resource to occur, known as
the Coffman conditions. (See "Systems Deadlocks," by E.G.Coffman.)

Without loss of generality, we describe the four aforementioned preconditions assuming the
competing entities are threads.

1.) Mutual Exclusion: The shared resource can only be held by one thread at a time.

2.) No preemption: Once the shared resource is obtained by a thread, it cannot be taken
away from it involuntarily.

3.) Hold and Wait: A thread holding a shared resource is also requesting/waiting for
additional resources, which are being held by other threads.

4.) Circular Wait: A circular wait occurs when a cycle forms in the resource allocation

graph. In this scenario, each thread is waiting for a resource that is currently held by
another thread, creating a closed loop of dependencies, which prevents any thread in the
cycle from progressing and results in a deadlock. Formally, there exists a set of waiting
threads, T ={T, T, ..., Tn}, such that T, is waiting for a resource held by T, T, is waiting
for a resource held by T, ..., and Ty, is waiting for a resource held by T..

Proactive prevention (by eliminating one of the four necessary preconditions)

No mutual exclusion: No thread gets exclusive access to the shared resource.

Enable preemption: No thread can hold the shared resource for more than a given time
frame while others are trying to obtain it.

Avoid hold and wait: No thread can hold the shared resource while requesting another,
and must, instead, try to obtain all the necessary resources at once, at the beginning.
Avoid circular waiting: Impose a hierarchical ordering on shared resource acquisition,
followed by all threads, under which a shared resource is requested only if all others that
precede it in the hierarchy are being held. (In practice, when writing code that acquires
multiple locks, developers acquire them in a well-documented hierarchical order.)

Reactive prevention (by detection)

In general, verifying the correctness of concurrent programs with respect to deadlocks is
a very difficult problem, which has been studied for many decades. The core of its
difficulty emanates from the enormous state space formed by all feasible interleavings of
multiple threads executing concurrent operations on shared resources.

The most practical approach to uncovering deadlocks in programs is to first perform what
is called a state space reduction—by considering only the interleaving of interdependent
operations as part of the target state space, and ignoring the rest—and then executing
the program under test in the reduced state space, hoping to bring it in a deadlock
erroneous state, if such exists. (See "Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion Problem," by P. Godefroid.)

Overall, using locks correctly is non-trivial: Prefer implementations with timeouts (preemption=
the user eventually gets some feedback) and follow a well-documented hierarchical acquisition.

15

https://dl.acm.org/doi/10.1145/356586.356588

