Q1: What is a thread?

Rethinking the use of processes: the process is a "heavy-weight" abstraction

Creating a new process is "expensive" because the OS must create many data structures
in the PCB to manage process-specific instances of shared system resources (such as
memory and open files) and keep lots of accounting metadata.

Communication between processes is "expensive" because it requires OS intervention

since each process is a unit of fault isolation and confinement.
Continuously switching execution between processes has hardware side effects.

- Conceptually, it is as simple as periodically putting the process that the processor
is currently executing back at the processor's ready queue, and selecting a new
process from the front of the queue.

- In practice, because process switching involves address space switching, this
leads to TLB misses.

- On a TLB miss, the processor needs to walk the translation table present
in physical memory and update its address translation entries.

- A virtual-to-physical address translation on a TLB hit (~95% rate) is ~1
processor cycle (~0.5ns) vs. a virtual-to-physical address translation on a
TLB miss, which is ~135 processor cycles.

- The virtual-to-physical translation table is usually hierarchical, meaning
there needs to be multiple memory accesses, and not just one.

- If the translation table is not present in the physical memory then "we are
in the zone" (50 s for a disk access vs. 0.5 ns on a TLB hit).

- There are software and hardware optimizations to alleviate the overhead of some
of the above, but why the hassle? Let's take a step back.

What are we trying to do? Complete as many jobs as possible in the unit of time.

In order to complete a job, we may need to execute lots of different tasks.
Recall the example of "baking a cake™: Each different "mess" you make around your
kitchen while following the instructions on how to bake a cake (e.g., while beating the
eggs, or while beating the butter) is a different task.
The faster you complete all tasks, the faster the desired job is completed.
Since tasks require coordination (e.g., when you finish beating butter, you need to do
something with it) and thus communication, if tasks are mapped to processes

- The OS will need to intervene every time the enclosing processes execute

interdependent tasks.
- Plus, the non-negligible overhead of switching between processes.

We need a thinner abstraction

Separate the concept of a process from its execution state.
The thread abstraction captures the minimum unit of execution.

- Q2: What are the differences and similarities between threads and processes?
"A thread is a single flow of control within a process, with its own thread ID, scheduling priority
and policy, errno value, floating-point environment, thread-specific key/value bindings, and the
required system resources to support a flow of control." IEEE Std 1003.1-2008 (POSIX.1-2008),
Base Definitions, Section 3.190.

- "A process is an address space with one or more threads executing within that address space,
and the required system resources for those threads.” IEEE Std 1003.1-2008 (POSIX.1-2008),
Base Definitions, Section 3.189.

- All threads of a process share the code, data, and heap segments, as well as all shared system
resources allocated by the OS to their process.

- Each thread has its own status (e.g., ready, running, or waiting), execution state (i.e., processor
registers), and a thread-specific portion of the stack.

- Unlike processes

- Thread creation is inexpensive because there is no need to copy/duplicate the complete
address space.

- Context switching between threads of the same process is inexpensive because there is
no address space switch and the TLB remains hot.

- Communication between threads of the same process is inexpensive because it need not
be mediated by the OS. (But it comes with new responsibilities.)

- We'll see real examples soon, showing the overhead of threads vs processes.

Overview of a multithreaded process VAS

%ip (thread-2)
%ip (thread-1)

start_data

text segment (code)

end_data

Higher mem
addresses

bttt

start_brk

f

brk (end of heap)

%sp (thread-2)
%fp (thread-2)

tt

%sp (thread-1)
%fp (thread-1)

t

Stack f

https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/V1_chap03.html#tag_03_189

Multithreaded process VAS on Linux

#define NUM_THREADS 3

void print stack pointer(int thread_id) {
uint64_t sp;
asm volatile ("mov %0, sp" : "=r" (sp));
printf(" "
thread_id, sp, &sp);
}

void* foo(void* arg) {
int thread_id = *(int*) arg;
print stack pointer(thread_id);
return NULL;

}

void main() {

int thread_ids[NUM THREADS];
pthread_t threads[NUM_THREADS],

for (inti=0;i < NUM_THREADS; i++) {
thread_ids[i] =i+ 1;

--- before threads creation ----

aaaab0510000-aaaab0512000 r-xp ...
aaaab0521000-aaaab0522000 r--p ...

aaaab0522000-aaaab0523000 rw-p ...
aaaad9392000-aaaad93b3000 rw-p ...
ffff8d080000-ffff8d208000 r-xp ...

(heap]

ffff8d27e000-ffff8d27f000 r-xp ...
ffff8d27f000-ffff8d281000 r--p ...
ffff8d281000-ffff8d283000 rw-p ...
ffffd83b9000-ffffd83da000 rw-p ...

[tid: O]; sp: Oxffffd83b91a0, &sp: 0xffffd83b91b0

[vdso]

[stack]

--- after threads creation ----

aaaab0510000-aaaab0512000 r-xp ...
aaaab0521000-aaaab0522000 r--p ...
aaaab0522000-aaaab0523000 rw-p ...
aaaad9392000-aaaad93b3000 rw-p ... [heap]
ffff8c060000-ffff8c070000 -—p
ffff8c070000-ffff8c870000 rw-p ...
ffff8c870000-ffff8c880000 ---p ...

thread_vmas
thread_vmas
thread_vmas

[usr/lib/libc.s0.6

fusr/lib/ld-linux-aarch64.so.1
Jusr/lib/ld-linux-aarch64.s0.1

thread_vmas
thread_vmas
thread_vmas

ffff8c880000-ffff8d080000 rw-p ...
ffff8d080000-ffff8d208000 r-xp ...

pthread create(&threads[i], NULL, foo,

&thread_idsl[i]); fusrflib/libc.s0.6

}
fff8d27e000-ffff8d27f000 r-xp ...
for (int = 0; i < NUM_THREADS; i++) { ffff8d27f000-ffff8d281000 r--p ...

pthread join(threads[i], NULL); 1fff8d281000-fff8d283000 rw-p ...

} ffffd83b9000-ffffd83dad00 rw-p ...

}

[vdso]
Jusr/lib/ld-linux-aarch64.so0.1
Jusr/lib/ld-linux-aarch64.s0.1
[stack]

[tid: 2]; sp: 0xffff8c86e810, &sp: 0xffff8c86e830
[tid: 1]; sp: 0xffff8d07e810, &sp: 0xffff8d07e830

Q3: How does the OS implement threads?

- POSIX-compliant OSes need to manage both threads and processes.
- Conceptually, it is easy to add kernel support for the thread abstraction, since, in principle, it is a
subset of the process abstraction.
- Scheduling decisions: On threads.
- Address space decisions: On processes.
- Book-keeping decisions: On processes (modulo execution state).

do {
do { Get a thread T from ready queue
Get a process ?.fr'gm ready PslE Change address space, if heeded
Execute Puntil time Q expires '~~~ i Execute T until time Q expires
Put P back in ready queue Put Tback in ready queue
} while(1) } while(1)

- POSIX does not dictate whether threads should have their own schedulable context and run
simultaneously on different processors. Therefore, threads can be implemented as
- User-level threads (e.g., early Solaris "green" threads)
- Multiple threads are mapped to one schedulable kernel context.
- Faster to create (syscalls take ~70 cycles; function calls take ~5 cycles).
- Invisible to the OS scheduling decisions: One thread blocks — all threads of the
process block, even those with tasks ready to be executed.

- Only one syscall per time. (One kernel stack per process.)

- Kernel-level threads (e.g., glibc pthreads in Linux)
- Each thread is mapped to one schedulable kernel context (1:1).
- See glibc's pthread_create implementation, using the clone3 syscall.
- Slower to create, and interact with; but, integrated with OS scheduling decisions:
One thread blocks — the OS will schedule another.

- Note that the above distinction between user- and kernel-level threads refers to the
implementation details of threads, and not to whether they are instantiated by the OS
kernel (e.g., via kthread_create() "kernel thread") and run exclusively in kernel's address
space or by user-space programs (e.g., via pthread create()) and have a user space
portion.

- In practice, all modern OSes support kernel-level threads and let applications or
language-specific thread libraries implement one of the three alternative ways for mapping their
respective thread abstraction to kernel-level threads.

- One-to-one (1:1): Each user-space thread is mapped to one kernel-level thread.

- Many-to-one (M:1): Many user-space threads are mapped to a kernel-level thread.

- Many-to-many (M:N): Many user-space threads are multiplexed on top of many
kernel-level threads. (E.g., go routines.)

- See this for more advanced models: https://homes.cs.washington.edu/~tom/pubs/sched_act.pdf.

- Q4: What is the historical evolution from uniprogramming to multiprogramming?
- Uniprogramming: Load one program in memory and execute it to completion.
- A human operator acts as the dispatcher.
- For each job: {load a program in memory, execute to completion}.
- Just needs a simple library of device drivers to use primitive hardware resources.
- OKdea for the 70's mainframes.

- Multiprogramming: Multiple processes reside in memory at the same time and the OS allocates

the processor to each of them by switching to a new process every time the current process
needs to block (e.g., while waiting for an asynchronous event).
- There is no strict time allocation, meaning a process may keep running until it blocks, or
to completion, or indefinitely.
- OS functionality required
- Virtual memory (for fault isolation and to keep many processes in memory).
- Hardware interrupts (for asynchronous events; e.g., to support disk DMASs).
- Improves processor utilization and job throughput.
- Violates one of the three OS desirable properties. [Q: Which one?]

- Multitasking: Multiple processes reside in memory at the same time, and the OS allocates the
processor to each of them with an upper bound on how much time each can use the processor
for (regardless of whether it will even block or not).

- Usually implemented with preemptive scheduling (e.g., timesharing)

- Each processor has a dedicated timer which expires periodically.

- On each time tick (hardware interrupt), the OS takes control and inspects
bookkeeping statistics regarding how long each schedulable context has used
the processor for, since the previous tick.

- Given the cumulative scheduling statistics and the scheduling policy the OS
implements (e.g., round-robin), the OS decides which schedulable context to
allocate the processor to next.

https://codebrowser.dev/glibc/glibc/nptl/pthread_create.c.html#pthread_create
https://elixir.bootlin.com/linux/v6.14.4/source/kernel/kthread.c#L579
https://linux.die.net/man/3/pthread_create
https://homes.cs.washington.edu/~tom/pubs/sched_act.pdf

- Fast switching between schedulable contexts gives the illusion that each context has a
dedicated processor for itself: For example, in Linux the timer fires up 250 times / second
by default, and invokes the scheduler tick function.

- OS functionality required

- Virtual memory (for fault isolation and to keep many processes in memory).
- Hardware interrupts (for asynchronous events; e.g., DMA and timers).

- Immediate feedback to users (i.e., each process or thread will take some processor time
within milliseconds) makes the system "pleasant” to use.

- Parallelism: Multiple different tasks run on multiple available processors in the system.

- Parallelism on multiprocessor systems combined with multitasking per processor is
"dreamland": High throughput (resource utilization) / Low latency (interactivity).

- Now the responsibility is shifted from the OS to the programmer.

- Q5: What is concurrency?

- Concurrency is an execution paradigm where multiple tasks (i.e., execution contexts, such as
processes or threads) run seemingly simultaneously on the same shared hardware resources.

Read Time Time Time Time
eady — — — —
wewe /N N N N

?4 Processor ?1 .'7)3 7)4

: : ‘_/. E
I 1 c
i I =

D L} J | J

S

Parallelism without concurency Concurency and parallelism
\
No concurency Concurency

Processor

- -I Processor

- ~|Procassor'

.. .

B 'ECOEC)eO

|

- Most modern operating systems support concurrency through time—sharing—based preemptive
scheduling: the OS interleaves the execution of all ready tasks, such that each runs for no more
than a predefined small time quantum, and when that quantum expires, the running task is
involuntarily preempted by the OS.

- With a sufficiently small time quantum—typically on the order of 10—100 ms—if a single processor
handles a few dozen ready tasks, each gets to execute multiple times per second, and thus they
all appear responsive to their users, akin to running simultaneously. (If multiple processors are
available, the concurrent operations will, in fact, execute truly simultaneously.)

https://elixir.bootlin.com/linux/v6.14-rc3/source/include/linux/jiffies.h#L16
https://elixir.bootlin.com/linux/v6.14-rc3/source/kernel/sched/core.c#L5634

Average completion time (microseconds)

50

40

30

20

10

Concurrency is a desirable OS property because it provides
- Responsiveness: No task stays blocked for perceptibly long, giving users the illusion
that their concurrent tasks have exclusive continuous access to all hardware resources.
- Throughput: No single long-running task can monopolize the processor, allowing,
overall, more tasks to execute (and potentially complete) in a unit of time.
- Scalability: The more hardware resources that are available, the more concurrent tasks
the system can execute on a unit of time.
The OS has done its part to provide abstractions for multitasking and parallelization.
Now, it's our turn to design code that takes advantage of what is being offered.
- Threads are the most popular abstraction for concurrency.
- Split your code into small routines expressing independent tasks.
- Divide and conquer as much as possible and avoid algorithms with shared state.

- If the tasks expressed in your code are independent, the OS will transparently
take care of scheduling, and you only need to select the appropriate abstraction.

- If the tasks expressed in your code are interdependent and access shared
resources, then coordination is required, and the burden is on the programmer.

Benchmarking concurrency threads vs. processes
"Given a set of N random numbers from 1 to 10 million, how many of them are primes?"
- The choice of abstraction leads to a very different user experience

- Processes have a scalability issue: More tasks = Performance degradation

- Adding more hardware resources will not help alleviate the problem.

- What this graph shows is that the processor has to execute more instructions for
the OS just to instantiate (and keep track of) a process than the instructions
required for solving the actual task assigned to each process.

- Since an equally difficult task is assigned to every process (numbers are
randomly chosen), the overhead degradation over time is due to the
accumulation of instructions for the creation and bookkeeping of processes.

—— Using threads
Using processes

B o e e e

5000 10000 15000 20000
Number of concurrent tasks

25000

