
​QUIZ-02​
​- K22 – V. Atlidakis​
​Name and student id __​

​1) [​​12 points​​: +2 pt on each correct answer, -2​​on each incorrect answer]​
​-​ ​Choose synchronous or asynchronous.​

​- System call:​ ​synchronous​​/ asynchronous​
​- Exception of type "abort":​​synchronous​​/ asynchronous​
​- Exception of type "fault":​ ​synchronous​​/ asynchronous​
​- Exception of type "trap":​ ​synchronous​​/ asynchronous​
​- Procedure call:​ ​synchronous​​/ asynchronous​
​- Timer interrupt:​ ​synchronous /​​asynchronous​

​2)​​[​​20 points​​: +2 pt on each correct answer, -2 on​​each incorrect answer]​
​-​ ​Choose Yes or No.​

​- The bootloader is in ROM: Yes /​​No​
​- The stack is a static segment:​ ​Yes /​​No​
​- A thread is a program in memory: Yes /​​No​
​- POSIX was invented for portability:​ ​Yes​​/ No​
​- A timer helps implement fault isolation: Yes /​​No​
​- A process is used to execute a program:​ ​Yes​​/ No​
​- A mode register helps implement preemption: Yes /​​No​
​- A user space application can directly call a syscall:​ ​Yes​​/ No​
​- On a TLB miss, a main memory access must follow:​ ​Yes​​/ No​
​- On x86, a double-fault is an exception of the type "fault": Yes /​​No​

​3)​ ​[28 points]​​Static and dynamic linking.​

​(a) [10 points]​ ​Describe​​two​​disadvantages​​of static linking.​
​-​ ​Large binaries in storage.​
​-​ ​Duplication of common code in main memory.​
​-​ ​Slower startup because of potentially unnecessary work that could have been deferred for later.​
​-​ ​Someone wrote: "more difficult to update because it requires recompilation."—Valid point.​
​-​ ​Slower compilation time that can be avoided.​

​(b) [10 points]​​Describe​​one advantage​​and​​one disadvantage​​of dynamic linking.​
​-​ ​Advantage: Deduplication of common code in main memory.​
​-​ ​Advantage: Faster startup because of the potential to defer unnecessary work for later.​
​-​ ​Disadvantage: Runtime dependencies: a massive problem in reality.​

​(c) [8 points]​​If you have a small instruction TLB (i-TLB) but​​wish to maintain a high hit rate​​, would you​
​prefer​​static or dynamic linking​​? Explain your choice.​

​-​ ​Static — the routines of the library that are used by the program are packed together in the pages of the​
​code segment. This has a considerably better probability of leading to a good TLB hit rate because of​
​better spatial locality. On the other hand, with dynamically linking, the code segment of the library​
​(including all the routines, both used and not used by the program) is mmap'ed in the process.​
​Therefore, the most likely result is to end up touching more pages, since the in-use routines will be​
​spread out among more pages.​

​4)​ ​[20 points]​ ​The first prompt below shows the source code of a file named main.c and the second prompt shows​
​an execution of the respective executable. Assume 0x​​foo​​is a hexadecimal virtual address, and the identifier​​of the​
​process executing "main" is 1000. Finally, prompt-3 shows a subset of the virtual memory address range​
​mappings of process 1000 executing "main".​
​———​

​[prompt-1]:​​cat main.c​
​#include <stdio.h>​

​const char *message = "Hello, World!\n";​

​void main(void) {​
​printf("%p: %s\n", &message, message);​

​}​
​———​

​[prompt-2]:​ ​gcc -o main main.c​
​[prompt-2]:​ ​./main​

​0x​​foo​​: Hello, World!​
​———​

​[prompt-3]:​ ​cat /proc/1000/maps​
​a) aaaae2de0000-aaaae2de1000 r-xp … /home/parallels/main​
​b) aaaae2df0000-aaaae2df1000 r--p … /home/parallels/main​
​c) aaaae2df1000-aaaae2df2000 rw-p … /home/parallels/main​
​d) fffff6426000-fffff6447000 rw-p … [stack]​

​———​

​a)​ ​[5 points]​​0x​​foo​​would normally belong in which of​​(a), (b), (c), (d), or (none)?​

​Fill in here:​​(C)​

​b)​ ​[15 points]​​Explain your choice.​
​-​ ​Observe that we are printing the address of the pointer, and not the address where the pointer points to.​
​-​ ​Most people got confused and answered (b), due to the fact that the content where the pointer points to​

​is indeed intended to be immutable. But we are printing the address of the pointer!​
​-​ ​Obviously, also, the choice cannot be (a), because this VMA range contains executable instructions.​
​-​ ​Finally, it cannot be (d), which is the stack—at the bottom of the Virtual Address Space (VAS)​
​-​ ​Initialized global/static variable ⇒ .data [see page 9, lecture-04]​

​c)​

​5)​​[20 points]​​There is a processor named​​di-reverted​​with a pipeline with the following five stages:​
​"​​IF​​: Instruction Fetch" → "​​ID​​: Instruction decode"​​→ "​​EX​​: Execute" → "​​WB​​: Register Write Back" → "​​MEM​​:​​Mem. Access".​
​Observe that the last two stages in the pipeline of​​di-reverted​​are reverted compared to what we discussed​​in class!​
​The processor​ ​di-reverted​​supports an instruction​​called​​k22inc​​,​​with syntax​ ​k22inc <%reg> <const>​​,​​which​
​first adds the value​​4​​to register​​%reg​​and then adds​​the constant​​const​​to the memory location pointed​​by the updated​
​value of register​​%reg​​.​

​The semantics of​​k22inc​​in C code would look like:​
​-​ ​reg += 4;​
​-​ ​mem[reg] += const;​

​Reverting the last two stages of the pipeline compared to what we have discussed in class was never a good idea.​

​a)​ ​[10 points]​​Specifically for supporting virtual memory,​​why is the instruction​​k22inc​​problematic?​
​-​ ​A memory translation (from virtual to physical) for mem[reg] is required. Therefore, the potential for an​

​address translation fault exists. On an address translation fault (​​remember:​​f​​ault ⇒ restart the faulting​
​instruction)​​, the OS will intervene,​​save the current execution state​​(i.e., the updated register %reg),​
​invoke the appropriate exception handler to handle the fault, and finally, the "faulting" instruction will be​
​restarted. Unfortunately, the state stored by the exception handler has the register %reg already updated​
​with +4, and the restart will add +4 again. Thus, the instruction k22inc may point to an unintended​
​memory address, depending on whether an address translation fault will be raised or not.​

​Assume​​di-reverted​​also supports an instruction​ ​k22help,​​with syntax​​k22help <%reg> <const>,​​which​​just "touches"​
​(i.e., accesses) the memory at address “reg + const” and does nothing else.​
​The semantics of​​k22help​​in C code would look like:​

​- (void) mem[reg+const];​

​b)​ ​[5 points]​​Explain how you could use the instruction​​k22help​​to help with the problem identified in (a)?​
​-​ ​Add​​k22help​ ​before any​​invocation of​​k22inc​​to prevent the possibility of an address translation fault.​
​-​ ​The pipeline of di-reverted is indeed generally problematic. However, specifically w.r.t. virtual memory,​

​anyone who sees how k22help can be used to prevent an address translation fault gets full credit.​

​c)​ ​[5 points]​​Given your modification suggested in (b) to use the command​​k22help​​, would you prefer your​
​system to have preemption on or off? And why?​

​-​ ​Off.​
​-​ ​Any solution presented in (b) can be undone with preemption on.​
​-​ ​If the process executing the program containing the pair of the two instructions gets scheduled out at the​

​end of the first instruction (k22help), when the process gets scheduled in again, it is unclear whether it​
​will get an address translation fault or not.​

