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Deep Learning

* Deep Neural Networks (DNNs) deliver remarkable
performance on many tasks.

* DNNs are increasingly deployed, including in attack-prone
contexts:

Ehe New Hork Cimes

Taylor Swift Said to Use Facial Recognition to
|dentify Stalkers
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Example

But DNNs are vulnerable to adversarial example attacks.
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Example

But DNNs are vulnerable to adversarial example attacks.
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Best-effort approaches

1. Evaluate accuracy under attack:
Launch an attack on examples in a test set.
Compute accuracy on the attacked examples.
2. Improve accuracy under attack:

Many approaches: e.g. train on adversarial examples.
(e.g Goodfellow+ '15; Papernot+ '16; Buckman+ '18; Guo+ '18)

Problem: both steps are attack specific, leading to an arms
race that attackers are winning.

(e.g Carlini-Wagner '17; Athalye+ '18)



Key questions

- Guaranteed accuracy: what is my minimum accuracy
under any attack?

» Prediction robustness: given a prediction can any
attack change it?



Key questions

Guaranteed accuracy: what is my minimum accuracy
under any attack?

Prediction robustness: given a prediction can any
attack change it?

A few recent approaches with provable guarantees.
(e.g. Wong-Kolter '18; Raghunathan+ '18; Wang+ '18)
Poor scalability in terms of:

Input dimension (e.g. number of pixels).
DNN size.

Size of training data.



Key questions

Guaranteed accuracy: what is my minimum accuracy
under any attack?

Prediction robustness: given a prediction can any
attack change it?

My defense PixelDP gives answers for norm
bounded attacks.

Key idea: novel use of differential privacy theory at
prediction time.

The most scalable approach: first provable
guarantees for large models on ImageNet!
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PixelDP outline

Design

Evaluation



Key idea

* Problem: small input perturbations create large score changes.
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Key idea

* Problem: small input perturbations create large score changes.

* |dea: design a DNN with bounded maximum score changes
(leveraging Differential Privacy theory).
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Differential Privacy

- Differential Privacy (DP): technigue to randomize a computation
over a database, such that changing one data point can only
lead to bounded changes in the distribution over possible

outputs.

 For (g, 6)-DP randomized computation Ar:
P(As(d) € S) < e P(As(d) € S) + 6

« We prove the Expected Output Stability Bound. For any DP
mechanism with bounded outputs in [0, 1] we have:

3(Af(d)) < eB(As(d)) +0
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Key idea

* Problem: small input perturbations create large score changes.

* |dea: design a DNN with bounded maximum score changes
(leveraging Differential Privacy theory).
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Key idea

(leveraging Differential Privacy theory).

Make prediction DP f\v
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* Problem: small input perturbations create large score changes.

* |dea: design a DNN with bounded maximum score changes

I stability bounds
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Key idea

(leveraging Differential Privacy theory).

Make prediction DP f\v
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Problem: small input perturbations create large score changes.

dea: design a DNN with bounded maximum score changes

I stability bounds
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PixelDP architecture

1. Add a new noise layer to make DNN DP.
2. Estimate the DP DNN's mean scores.

3. Add estimation error in the stability bounds.
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PixelDP architecture

input layer layer layer softmax
X 1 2 3 Q(w)

noise layer

1. Add a new noise layer to make DNN DP.
2. Estimate the DP DNN's mean scores.
3. Add estimation error in the stability bounds.
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PixelDP architecture
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1. Add a new noise layer to make DNN DP.
2. Estimate the DP DNN's mean scores.
3. Add estimation error in the stability bounds.
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PixelDP architecture

input layer layer layer softmax
X 1 3 AQ(X)

. v, .
Resilience to post-processing: any computation on the

output of an (g, 8)-DP mechanism is still (€, 6)-DP.

1. Add a new noise layer to make DNN DP.
2. Estimate the DP DNN's mean scores.
3. Add estimation error in the stability bounds.
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PixelDP architecture
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Compute empirical mean with
standard Monte Carlo estimate.

1. Add a new noise layer to make DNN DP.

2. Estimate the DP DNN's mean scores.

3. Add estimation error in the stability bounds.
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PixelDP architecture
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1. Add a new noise layer to make DNN DP.

2. Estimate the DP DNN's mean scores.

3. Add estimation error in the stability bounds.
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PixelDP architecture
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1. Add a new noise layer to make DNN DP.

2. Estimate the DP DNN's mean scores.

3. Add estimation error in the stability bounds.
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Further challenges

Train DP DNN with noise.

Control pre-noise sensitivity during training.

Support various attack norms (L, Lo, L

Sca

e to large DNNs and datasets.
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Scaling to Inception on ImageNet

* Large dataset: image resolution is 300x300x3.

* Large model:
48 layers deep.
23 millions parameters.
Released pre-trained by Google on ImageNet.

Inception-v3 i
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Scaling to Inception on ImageNet

PixelDP auto-encoder
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Scaling to Inception on ImageNet

PixelDP auto-encoder
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Post-processing
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PixelDP Outline

Evaluation



Evaluation:

Guaranteed accuracy on large DNNs/datasets
Are robust predictions harder to attack in practice?

Comparison with other defenses against state-of-the-
art attacks.
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Methodology

Five datasets: Three models:
: Number of Number of Number of
Dataset Image size Dataset
Classes Layers Parameters
ImageNet 299x299x3 1000 Inception-v3 48 23M
CIFAR-100  32x32x3 100 Wide ResNet 28 36M
CIFAR-10 32x32x3 10 CNN 3 3M
SVHN 32x32x3 10
MNIST 28x28x1 10
Metrics: Attack methodology:
- (Guaranteed accuracy. - State of the art attack [Carlini
- Accuracy under attack. and Wagner S&P'17].

- Strengthened against our
defense by averaging gradients
over multiple noise draws.
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Guaranteed accuracy on ImageNet with Inception-v3

Accuracy Guaranteed accuracy (%)

(%) 0.05 0.1 0.2

Baseline /8 - - -

i PixelDP: L=0.25 68 63 0 0
More DP noise
PixelDP: L=0.75 58 53 49 @

Meaningful guaranteed accuracy for ImageNet!
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Accuracy on robust predictions

->¢ Baseline
-4 Precision: threshold 0.05

Dataset: CIFAR-10

Accuracy (top 1)

0 0.2 0.4 0.6 0.8 1 1.2

Attack size (2-norm)

What if we only act on robust predictions?
(e.g. if not robust, check ticket)

33




Accuracy on robust predictions

->¢ Baseline
- Precision: threshold 0.1
A Recall: threshold 0.1

Dataset: CIFAR-10

Comparison:
Madry+ ‘17

Accuracy (top 1)

0 0.2 0.4 0.6 0.8 1

Attack size (2-norm)

If we increase the robustness threshold:
better accuracy, less predictions.
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Comparison with other provable defenses

# ResNet - PixelDP (L = 0.1)
+ CNN - Wong-Kolter ‘18

Dataset: SVHN

Comparison:
Wong-Kolter '18

Accuracy (top 1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Attack size (2-norm)

PixelDP scales to larger models, yielding better
accuracy and robustness.

35



PixelDP summary

* PixelDP is the first defense that:

Gives attack-independent guarantees against norm-
bounded adversarial attacks.

And scales to the largest models and datasets.

» Already extensions by others!

Improve the bounds at a given noise level (Li+ '18;
Cohen+ '19).

Use other noise distributions (Pinot+ '19).
Adapt optimization (Rakin+ '18).
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