
RESTler: Stateful REST API
Fuzzing

Vaggelis Atlidakis (Columbia University), Patrice Godefroid
(Microsoft Research), and Marina Polishchuk (Microsoft Research)

Over the past decade
❖ Explosion of cloud services (in Azure and AWS)

❖ Rapidly evolving ecosystem

❖ REST APIs is the standard way to use cloud services

RESTler: Stateful REST API Fuzzing

Over the past decade
❖ Explosion of cloud services (in Azure and AWS)

❖ Rapidly evolving ecosystem

❖ REST APIs is the standard way to use cloud services

➢ What about testing?

RESTler: Stateful REST API Fuzzing

Testing REST APIs

RESTler: Stateful REST API Fuzzing

Testing REST APIs
❖ Grammar-based fuzzing (e.g., Peach, SPIKE, ...)

➢ Requires manual effort
➢ New grammar for every new service

RESTler: Stateful REST API Fuzzing

Testing REST APIs
❖ Grammar-based fuzzing (e.g., Peach, SPIKE, ...)

➢ Requires manual effort
➢ New grammar for every new service

❖ HTTP fuzzers (e.g., Sulley, Burp, ...)
➢ Requires live traffic
➢ Not Stateful

RESTler: Stateful REST API Fuzzing

Testing REST APIs
❖ Grammar-based fuzzing (e.g., Peach, SPIKE, ...)

➢ Requires manual effort
➢ New grammar for every new service

❖ HTTP fuzzers (e.g., Sulley, Burp, ...)
➢ Requires live traffic
➢ Not Stateful

❖ Custom tools for specific APIs
➢ Labour intensive
➢ High maintenance

RESTler: Stateful REST API Fuzzing

Our solution
➢ RESTler: A stateful REST API fuzzer

RESTler: Stateful REST API Fuzzing

Our solution
➢ RESTler: A stateful REST API fuzzer

Key techniques for stateful REST API fuzzing

1. Dependency analysis between request types

RESTler: Stateful REST API Fuzzing

Our solution
➢ RESTler: A stateful REST API fuzzer

Key techniques for stateful REST API fuzzing

1. Dependency analysis between request types

2. Dynamic feedback loop that learns from past tests

RESTler: Stateful REST API Fuzzing

Our solution
➢ RESTler: A stateful REST API fuzzer

Kinds of bugs RESTler can find

➢ “500 Internal Server Error” (unhandled exceptions) after
executing a sequence of API requests

RESTler: Stateful REST API Fuzzing

Outline
❖ Limitations of existing solutions

❖ System overview

❖ Evaluation & bugs found

❖ Experiences with public cloud services

❖ Conclusions

RESTler: Stateful REST API Fuzzing

System overview

REST API
specification

(e.g., Swagger)

RESTler: Stateful REST API Fuzzing

System overview

REST API
specification

(e.g., Swagger)

RESTler
compiler

❖ Describe how to fuzz each
request type

❖ Identify producer/consumer
dependencies

❖ Generate code to parse
responses

RESTler: Stateful REST API Fuzzing

RESTler
grammar

(currently in Python)

System overview

REST API
specification

(e.g., Swagger)

RESTler
compiler

RESTler test
engine

❖ Generate and execute tests:
sequences of requests

❖ Systematic state-space exploration
(breadth first search and others)

❖ Analyze test results: Dynamic
feedback loop learns from service
responses in past tests

Tests &
bugs

RESTler: Stateful REST API Fuzzing

RESTler
grammar

(currently in Python)

❖ Describe how to fuzz each
request type

❖ Identify producer/consumer
dependencies

❖ Generate code to parse
responses

Example

Sample Swagger specification RESTler grammar fragment

Sample test
(request and response)

RESTler: Stateful REST API Fuzzing

...

Outline
❖ Limitations of existing solutions

❖ System overview

❖ Evaluation & bugs found

❖ Experiences with public cloud services

❖ Conclusions

RESTler: Stateful REST API Fuzzing

Questions
➢ Q1: Are tests generated by RESTler exercising deeper

service-side logic over time?

➢ Q2: Can RESTler find bugs in large-scale production services?

RESTler: Stateful REST API Fuzzing

Questions
➢ Q1: Are tests generated by RESTler exercising deeper

service-side logic over time?

➢ Q2: Can RESTler find bugs in large-scale production services?

Case study: Gitlab
❖ Open-source self-hosted GIT service (millions of users)

❖ ~376 kLOC (Ruby + native libraries)

❖ Complex REST API

RESTler: Stateful REST API Fuzzing

Deeper service exploration (Q1)
RESTler: Stateful REST API Fuzzing

Testing GitLab APIs with RESTler (5h per API family)

API
Family

 Total
requests

Seq.
len.

Cumulative code
coverage

(lines of code)

Tests

Commits 11 1 598 1
2 1108 7
3 1196 250
4 1760 2220
5 1760 3667

Branches 7 1 598 1
2 1089 8
3 1172 58
4 1182 576
5 1185 3644

Issues 22 1 816 37
2 1163 2444
3 1163 4156

Repos 10 1 598 1
2 1117 97
3 1181 5153

Deeper service exploration (Q1)
RESTler: Stateful REST API Fuzzing

Testing GitLab APIs with RESTler (5h per API family)

API
Family

 Total
requests

Seq.
len.

Cumulative code
coverage

(lines of code)

Tests

Commits 11 1 598 1
2 1108 7
3 1196 250
4 1760 2220
5 1760 3667

Branches 7 1 598 1
2 1089 8
3 1172 58
4 1182 576
5 1185 3644

Issues 22 1 816 37
2 1163 2444
3 1163 4156

Repos 10 1 598 1
2 1117 97
3 1181 5153

❖ Longer sequences increase
service-side code coverage

Deeper service exploration (Q1)
RESTler: Stateful REST API Fuzzing

Testing GitLab APIs with RESTler (5h per API family)

API
Family

 Total
requests

Seq.
len.

Cumulative code
coverage

(lines of code)

Tests

Commits 11 1 598 1
2 1108 7

3 1196 250
4 1760 2220
5 1760 3667

Branches 7 1 598 1
2 1089 8

3 1172 58
4 1182 576
5 1185 3644

Issues 22 1 816 37
2 1163 2444

3 1163 4156
Repos 10 1 598 1

2 1117 97

3 1181 5153

❖ Longer sequences increase
service-side code coverage

❖ Sequences of 3 requests (at least)

Deeper service exploration (Q1)
RESTler: Stateful REST API Fuzzing

Testing GitLab APIs with RESTler (5h per API family)

API
Family

 Total
requests

Seq.
len.

Cumulative code
coverage

(lines of code)

Tests

Commits 11 1 598 1

2 1108 7
3 1196 250
4 1760 2220
5 1760 3667

Branches 7 1 598 1
2 1089 8
3 1172 58
4 1182 576
5 1185 3644

Issues 22 1 816 37
2 1163 2444
3 1163 4156

Repos 10 1 598 1
2 1117 97
3 1181 5153

❖ Longer sequences increase
service-side code coverage

❖ Sequences of 3 requests (at least)

❖ Progress in a huge search space
 Testing Commits API (5 hours)

➢ Brute-force: 11 request types / 4 renderings on avg /
(11*4)^3 = 85k feasible sequences of length 3

Deeper service exploration (Q1)
RESTler: Stateful REST API Fuzzing

Testing GitLab APIs with RESTler (5h per API family)

❖ Longer sequences increase
service-side code coverage

❖ Sequences of 3 requests (at least)

❖ Progress in a huge search space
 Testing Commits API (5 hours)

➢ Brute-force: 11 request types / 4 renderings on avg /
(11*4)^3 = 85k feasible sequences of length 3

➢ RESTler: Seq. Len. 3 / Test generated 250

(feedback + dependencies!)

API
Family

 Total
requests

Seq.
len.

Cumulative code
coverage

(lines of code)

Tests

Commits 11 1 598 1
2 1108 7
3 1196 250
4 1760 2220
5 1760 3667

Branches 7 1 598 1
2 1089 8
3 1172 58
4 1182 576
5 1185 3644

Issues 22 1 816 37
2 1163 2444
3 1163 4156

Repos 10 1 598 1
2 1117 97
3 1181 5153

New bugs found in GitLab (Q2)

RESTler: Stateful REST API Fuzzing

Testing GitLab APIs with RESTler (5h per API family)

API
Family BFS BFS-

Fast
Random-

Walk ⋂ U
Commits 5 1 5 1 5

Branches 7 7 7 5 8

Issues 0 1 1 0 1

Repos 2 3 3 2 3

Groups 0 0 2 0 2

Projects 2 1 3 1 3

Total 16 13 21 9 22

New bugs found in GitLab (Q2)

❖ 22 new bugs found on Aug. ’18
(+6 bugs found on Apr. ‘18)

RESTler: Stateful REST API Fuzzing

API
Family BFS BFS-

Fast
Random-

Walk ⋂ U
Commits 5 1 5 1 5

Branches 7 7 7 5 8

Issues 0 1 1 0 1

Repos 2 3 3 2 3

Groups 0 0 2 0 2

Projects 2 1 3 1 3

Total 16 13 21 9 22

Testing GitLab APIs with RESTler (5h per API family)

New bugs found in GitLab (Q2)

❖ 22 new bugs found on Aug. ’18
(+6 bugs found on Apr. ‘18)

❖ All bugs were disclosed to Gitlab
developers

RESTler: Stateful REST API Fuzzing

API
Family BFS BFS-

Fast
Random-

Walk ⋂ U
Commits 5 1 5 1 5

Branches 7 7 7 5 8

Issues 0 1 1 0 1

Repos 2 3 3 2 3

Groups 0 0 2 0 2

Projects 2 1 3 1 3

Total 16 13 21 9 22

Testing GitLab APIs with RESTler (5h per API family)

New bugs found in GitLab (Q2)

❖ 22 new bugs found on Aug. ’18
(+6 bugs found on Apr. ‘18)

❖ All bugs were disclosed to Gitlab
developers

❖ All bugs were easily reproducible,
confirmed, and fixed!

RESTler: Stateful REST API Fuzzing

API
Family BFS BFS-

Fast
Random-

Walk ⋂ U
Commits 5 1 5 1 5

Branches 7 7 7 5 8

Issues 0 1 1 0 1

Repos 2 3 3 2 3

Groups 0 0 2 0 2

Projects 2 1 3 1 3

Total 16 13 21 9 22

Testing GitLab APIs with RESTler (5h per API family)

New bugs found in GitLab (Q2)

❖ Example Bug [#50268]
1. Create a gitlab project
2. Create a repository file with a

proper commit message
3. Delete the repository file with an

empty commit message

RESTler: Stateful REST API Fuzzing

API
Family BFS BFS-

Fast
Random-

Walk ⋂ U
Commits 5 1 5 1 5

Branches 7 7 7 5 8

Issues 0 1 1 0 1

Repos 2 3 3 2 3

Groups 0 0 2 0 2

Projects 2 1 3 1 3

Total 16 13 21 9 22

Testing GitLab APIs with RESTler (5h per API family)

New bugs found in GitLab (Q2)

❖ Example Bug [#50268]
1. Create a gitlab project
2. Create a repository file with a

proper commit message
3. Delete the repository file with an

empty commit message
➢ “500 Internal Server Error”

RESTler: Stateful REST API Fuzzing

API
Family BFS BFS-

Fast
Random-

Walk ⋂ U
Commits 5 1 5 1 5

Branches 7 7 7 5 8

Issues 0 1 1 0 1

Repos 2 3 3 2 3

Groups 0 0 2 0 2

Projects 2 1 3 1 3

Total 16 13 21 9 22

Testing GitLab APIs with RESTler (5h per API family)

Outline
❖ Limitations of existing solutions

❖ System overview

❖ Evaluation & bugs found

❖ Experiences with public cloud services

❖ Conclusions

RESTler: Stateful REST API Fuzzing

Experiences with Azure and Office 365
❖ Four production cloud services with open-source specs

➢ Resource management Azure services
➢ Real-time messaging Office 365 service

RESTler: Stateful REST API Fuzzing

Experiences with Azure and Office 365
❖ Four production cloud services with open-source specs

➢ Resource management Azure services
➢ Real-time messaging Office 365 service

❖ Needed new features
➢ Garbage Collection (resource quotas)
➢ Authentication Hooks (short-lived access tokens)
➢ Resource-specific mutations (exotic naming schemes)

RESTler: Stateful REST API Fuzzing

Experiences with Azure and Office 365
❖ Four production cloud services with open-source specs

➢ Resource management Azure services
➢ Real-time messaging Office 365 service

❖ Needed new features
➢ Garbage Collection (resource quotas)
➢ Authentication Hooks (short-lived access tokens)
➢ Resource-specific mutations (exotic naming schemes)

➢ RESTler found bugs in all services tested so far!

RESTler: Stateful REST API Fuzzing

Conclusions
❖ Build the first stateful REST API fuzzer!

❖ Found bugs in Azure and Office 365 cloud services!

❖ Found 28 new bugs in Gitlab!

RESTler: Stateful REST API Fuzzing

Conclusions
❖ Build the first stateful REST API fuzzer!

❖ Found bugs in Azure and Office 365 cloud services!

❖ Found 28 new bugs in Gitlab!

➢ Developers are fixing the bugs

found with RESTler!

RESTler: Stateful REST API Fuzzing

Thank you!
RESTler: Stateful REST API Fuzzing

Paper link
https://tinyurl.com/yyg5a8je

https://tinyurl.com/yyg5a8je

Thank you!
RESTler: Stateful REST API Fuzzing

Paper link
https://tinyurl.com/yyg5a8je

https://tinyurl.com/yyg5a8je

Scalability of state-space exploration strategies

RESTler: Stateful REST API Fuzzing

Impact of the two key techniques

RESTler: Stateful REST API Fuzzing

Extending sequences in Randoop

RESTler: Stateful REST API Fuzzing

Sample bugfix in Gitlab
RESTler: Stateful REST API Fuzzing

Developers’ Responses

#50276

#50272

#50677

RESTler: Stateful REST API Fuzzing

